Microarray Overview

- what is a microarray? spotted arrays & oligonucleotides
- image analysis separating signal from noise
- informatics blasting gene accession numbers mining literature for function building & interpreting patterns
- experimental design comparing conditions replication & factorial design
- data analysis clustering & classification hypothesis testing or Bayesian inference

What is a Microarray?

goal: highly specific binding of mRNA
what proteins are actively being expressed?
compare tissues under different conditions
identify patterns of differential expression

spotted arrays
- highly specific complementary DNA (cDNA)
- spots on glass (nylon) slide as probes
- two mRNA samples with different dyes
- hundreds or thousands of spots per slide

oligonucleotide arrays (Affymetrix©)
- 20 sets of 25-mer probes per gene
- pairs of positive match and mis-match
careful, secret selection of 25-mers
tens of thousands of genes per chip

Image Analysis

- creating & using array
 - making spots on array
 - isolating mRNA samples
 - binding to spots
 - reading signal
 - adjusting for background

- image analysis
 Yang Buckley Dudoit Speed (2000)

- combining oligonucleotide probe pairs
 Li Wong (2001) PNAS 98: 31-36
Microarray Informatics

- gene has GenBank or other accession number
 NCGR: www.ncgr.org

- mine available literature for function

- doublecheck with Northern, RT-PCR or RPA(?)

- can be slow: how to speed up?
 BioPERL Project (www.bioperl.org)
 R Project (www.r-project.org)

- when to use function information? (Gould)
 prefilter: assign genes to groups for analysis
 postfilter: detected functional groupings

Microarray Experiments: Design

- design experiment
 genes, conditions, replicates()?
 multiple conditions on one chip?
 multiple chips per gene array?

- collect tissue under different conditions
 extract mRNA
 hybridize mRNA to chip(s)
 organize microarray data

- protocol to detect patterns
 prescreen genes for low abundance?
 tools to find putative differential expression
 postscreen genes for known function?

Microarray Experiments: Analysis

- compare conditions
 with or without replication
 find patterns of differential expression

- linear models (anova)
 formal tests
 assumptions and models
 parametric or non-parametric
 log-normal, gamma, poisson

- data reduction
 clustering, classification
 principal components (PCA or SVD)
 fold change vs. other patterns?

Future of Microarray Studies

- clinical trials
 repeated measures on cases
 multiple tissue samples per visit

- QTL studies in experimental crosses
 expression profile as huge phenotype
 epistasis & transcription factors
 recombinant inbred & congenic lines

- environmental studies

- proteomics, metabolomics & cell models
 protein chips already in advanced research
 in situ views of cell activity
 in silico simulations of function