Chapter 1 Solutions to Homework;
SPRING 2012

1. (a) The sample space is
 \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}.

 (b) \(A = \{1, 3, 5, 7, 9\} \).

 (c) \(B = \{8, 10\} \).

 (d) The outcome is larger than 6.

2. \(P(A) = 5/10 = 0.5000 \).
 \(P(B) = 2/10 = 0.2000 \).
 \(P(C) = 4/10 = 0.4000 \).

3. (a) \(P(1) = 0.30, P(2) = 0.15, P(3) = 0.25, P(4) = 0.20, P(5) = 0.10 \).
 This is mathematically valid; all numbers are nonnegative and they sum to one.

 (b) \(P(1) = 0.30, P(2) = 0.15, P(3) = 0.20, P(4) = 0.20, P(5) = 0.10 \).
 Not valid; these numbers sum to 0.95, not 1.

 (c) \(P(1) = 0.30, P(2) = 0.15, P(3) = 0.25, P(4) = 0.20, P(5) = 0.20 \).
 Not valid; these numbers sum to 1.10, not 1.

 (d) \(P(1) = 0.30, P(2) = 0.15, P(3) = 0.25, P(4) = 0.40, P(5) = -0.10 \).
 Not valid; while these numbers sum to one, negative probabilities are not allowed.

4. (a) \(P(A) = 0.30 + 0.25 + 0.10 = 0.65 \).

 (b) \(P(B) = 0.15 + 0.20 = 0.35 \).

 (c) \(P(C) = 0.20 \).

 (d) \(P(D) = 0.25 + 0.20 + 0.10 = 0.55 \).

 (e) \(P(E) = 0.30 + 0.25 = 0.55 \).

5. (a) \(P(A\ or\ B) = P(A) + P(B) = 0.30 + 0.55 = 0.85 \).

 (b) \(P(A^c) = 1 - P(A) = 1 - 0.30 = 0.70 \).

 (c) \(P(B^c) = 1 - P(B) = 1 - 0.55 = 0.45 \).

6. By Rule 6, \(P(A\ or\ B) = P(A) + P(B) - P(AB) = 0.65 + 0.45 - 0.30 = 0.80 \).

7. The sampling distribution is below.

\[
\begin{array}{c|c|c}
 x & P(X = x) & x & P(X = x) \\
- & - & - & - \\
 0 & 0.04 & 5 & 0.16 \\
 1 & 0.08 & 6 & 0.12 \\
 2 & 0.12 & 7 & 0.08 \\
 3 & 0.16 & 8 & 0.04 \\
 4 & 0.20 & & \\
\end{array}
\]

8. First, I note that the possible values of \(X = X_1 + X_2 + X_3 \) are 3, 4, 5, 6, 7, 8 and 9. Also note that the probability distribution for \(X \) will be symmetric around 6. (Why?). Thus, I need to determine only three probabilities.

\[
P(X = 3) = P(1, 1, 1) = (1/3)^3 = 1/27.
\]

\[
P(X = 4) = 3P(1, 1, 2) = 3/27.
\]

\[
P(X = 5) = 3P(1, 1, 3)+3P(2, 2, 1) = 6/27.
\]

Thus, the sampling distribution is:

\[
\begin{array}{c|c|c|c|c}
 x & 3 & 4 & 5 & 6 \\
 P(X = x) & 1/27 & 3/27 & 6/27 & 7/27 \\
 x & 7 & 8 & 9 & \\
 P(X = x) & 6/27 & 3/27 & 1/27 & \\
\end{array}
\]

9. First, we determine the probability of each of the 16 cells.

\[
\begin{array}{c|c|c|c|c}
 X_1 & 1 & 2 & 3 & 4 \\
\hline
 1 & 0.01 & 0.02 & 0.03 & 0.04 \\
 2 & 0.02 & 0.04 & 0.06 & 0.08 \\
 3 & 0.03 & 0.06 & 0.09 & 0.12 \\
 4 & 0.04 & 0.08 & 0.12 & 0.16 \\
\end{array}
\]

Summing probabilities, one gets the following distribution for \(X \).

\[
\begin{array}{c|c|c|c|c|c|c}
 x & 2 & 3 & 4 & 5 \\
 P(X = x) & 0.01 & 0.04 & 0.10 & 0.20 \\
 x & 6 & 7 & 8 & \\
 P(X = x) & 0.25 & 0.24 & 0.16 & \\
\end{array}
\]
Chapter 1 Solutions to Homework Continued

10. The possible values of X are: 3, 4, \ldots, 12. Probabilities are given below.

\[
P(X = 3) = P(1, 1, 1) = (0.1)^3 = 0.001.
\]

\[
P(X = 4) = 3P(1, 1, 2) = 3(0.1)^2(0.2) = 0.006.
\]

\[
P(X = 5) = 3P(1, 1, 3) + 3P(1, 2, 2) = 3(0.1)^2(0.3) + 3(0.1)(0.2)^2 = 0.021.
\]

\[
P(X = 6) = 3P(1, 1, 4) + 6P(1, 2, 3) + P(2, 2, 2) = 3(0.1)^2(0.4) + 6(0.1)(0.2)(0.3) + (0.2)^3 = 0.056.
\]

\[
P(X = 7) = 6P(1, 2, 4) + 3P(1, 3, 3) + 3P(2, 2, 3) = 6(0.1)(0.2)(0.4) + 3(0.1)(0.3)^2 + 3(0.2)^2(0.3) = 0.111.
\]

\[
P(X = 8) = 6P(1, 3, 4) + 3P(2, 2, 4) + 3P(2, 3, 3) = 6(0.1)(0.3)(0.4) + 3(0.2)^2(0.4) + 3(0.2)(0.3)^2 = 0.174.
\]

\[
P(X = 9) = 3P(1, 4, 4) + 6P(2, 3, 4) + P(3, 3, 3) = 3(0.1)(0.4)^2 + 6(0.2)(0.3)(0.4) + (0.3)^3 = 0.219.
\]

\[
P(X = 10) = 3P(2, 4, 4) + 3P(3, 3, 4) = 3(0.2)(0.4)^2 + 3(0.3)^2(0.4) = 0.204.
\]

\[
P(X = 11) = 3P(3, 4, 4) = 3(0.3)(0.4)^2 = 0.144.
\]

\[
P(X = 12) = P(4, 4, 4) = (0.4)^3 = 0.064.
\]

11. (a) There are two 5-tuples that give a total of 7: 1,1,1,1,3; and 1,1,1,2,2. The numbers of arrangements of these are: 5 and 10, respectively. Thus,

\[
P(X = 7) = 15/7776 = 0.00193,
\]

as given in the table.

(b) There are three 5-tuples that give a total of 27: 6,6,6,6,3; 6,6,6,5,4; and 6,6,5,5,5. The numbers of arrangements of these are: 5, 20 and 10, respectively. Thus,

\[
P(X = 27) = 35/7776 = 0.00450,
\]

as given in the table.

(c) The NCI is:

\[
0.09777\pm 3\sqrt{[0.09777(0.90223)]/100000} = 0.09777\pm 0.00282 = [0.09495, 0.10059].
\]

(d) The NCI is:

\[
0.03813\pm 3\sqrt{[0.03813(0.96187)]/100000} = 0.03813\pm 0.00182 = [0.03631, 0.03995].
\]

(e) We verify the value by summing $P(X = x)$ for $x = 26, 27, \ldots, 30$. The r.f. of $(X > 25)$ is 0.01668. The NCI is

\[
0.01668\pm 3\sqrt{[0.01668(0.98332)]/100000} = 0.01668\pm 0.00122 = [0.01546, 0.1790].
\]

The NCI is correct begins it contains 0.01620.
1. (a) The probability of the given sequence is $pqppq = p^3q^2 = (0.58)^3(0.42)^2 = 0.0344$.

(b) This will happen if Brian obtains S, S, F, in that order. The probability is $ppq = (0.58)^2(0.42) = 0.1413$.

(c) This will happen if Brian begins with three successes. The probability is $ppp = (0.58)^3 = 0.1951$.

(d) The probability is $P(X = 3) =$

\[\frac{6!}{3!3!}(0.58)^3(0.42)^3 = 0.2891. \]

2. (a) The probability of an Angelina is

\[P(X = 3) + P(X = 4) = \frac{4!}{3!1!}(0.58)^3(0.42) + (0.58)^4 = 0.3278 + 0.1132 = 0.4410. \]

(b) The probability is $P(X = 3) =$

\[\frac{5!}{3!2!}(0.441)^3(0.559)^2 = 0.2680. \]

3. Let X_1 denote the number of successes Brian obtains on Saturday morning and X_2 denote the number of successes he obtains on Saturday afternoon. $Y = X_1 + X_2$.

(a) $P(Y = 7) =$

\[P(X_1 = 5, X_2 = 2) + P(X_1 = 4, X_2 = 3) = \]

\[p^5 \frac{5!}{2!3!}p^2q^3 + \frac{5!}{4!1!}p^4q^4 \frac{4!}{3!1!}p^3q = 10p^7q^3 + 20p^7q^2. \]

(b) $P(Y = 3) =$

\[P(X_1 = 2, X_2 = 1) + P(X_1 = 3, X_2 = 0) = \]

\[\frac{5!}{2!3!}p^2q^3 \frac{2!}{1!1!}pq + \frac{5!}{3!2!}p^3q^2q^3 = 20p^3q^4 + 10p^3q^5. \]

4. (a) Event A is a function of the first two trials while event B is a function of the last three trials. These sets of trials do not overlap; thus, we may use the multiplication rule:

\[P(AB) = P(A)P(B) = p^2q^3 = (0.58)^2(0.42)^3 = 0.0249. \]

(b) Define the event E: trials 3–7 inclusive yield a total of exactly two successes. With this definition, we see that

\[P(ABC) = P(ABE). \]

Because A, B and E involve nonoverlapping trials, we may use the multiplication rule:

\[P(ABE) = p^2q^3[5!/2!3!]p^2q^3 = 10p^4q^6 = 0.0062. \]
(e) Upon reflection, event \(ABD \) occurs, if, and only if, the ten trials yield the following sequence:

\[S, S, F, F, F, S, S, F, F, F. \]

The probability of this sequence is

\[p^4 q^6 = 0.00062. \]

(d) Upon reflection, event \(CD \) occurs, if, and only if, \(W_1 = W_2 = 2 \). The probability of this event is:

\[\frac{5!}{2!3!} p^2 q^3 \left(\frac{5!}{2!3!} p^2 q^3 \right) = 0.062. \]

5. For \(X \sim \text{Bin}(1024, 0.50) \),

\[\mu = np = 1024(0.50) = 512, \]

\[\sigma^2 = npq = 1024(0.50)(0.50) = 256, \text{ and } \sigma = \sqrt{256} = 16. \]

Thus,

\[Z = \frac{X - 512}{16}. \]

6. For \(X \sim \text{Bin}(192, 0.25) \), \(\mu = 48 \) and \(\sigma = 6 \). Thus, we enter the normal curve website with these values.

(a) \(P(X \geq 55) \): Enter 54.5 in the ‘Above’ box and obtain 0.1393.

(b) \(P(X = 48) \): Enter 47.5 and 48.5 in the ‘Between’ box and obtain 0.0664.

(c) \(P(X \leq 48) \): Enter 48.5 in the ‘Below’ box and obtain 0.5332.

(d) \(P(42 \leq X \leq 60) \): Enter 41.5 and 60.5 in the ‘Between’ box and obtain 0.8421.

(e) \(P(45 \leq X < 57) \): Enter 44.5 and 56.5 in the ‘Between’ box and obtain 0.6419.

7. (a) 0.1398.

(b) 0.0664. (Thus, the approximation is correct.)

(c) 0.5387.

(d) 0.9795 − 0.1387 = 0.8408.

(e) 0.9199 − 0.2830 = 0.6369.

8. Below are all the ones I could figure out:

\[P(X \geq 94) = 1 - 0.2277 = 0.7723. \]

\[P(94 \leq X \leq 100) = 0.5268 - 0.2277 = 0.2991. \]

\[P(X < 93 \text{ or } X > 101) = 1 - 0.2991 = 0.7009. \]

9. \(P(X \geq 4) = P(X = 4) + P(X = 5) + P(X = 6) + P(X = 7) = \)

\[\frac{7!}{4!3!} (0.50166)^4 (0.49834)^3 + \frac{7!}{5!2!} (0.50166)^5 (0.49834)^2 + \frac{7!}{6!1!} (0.50166)^6 (0.49834) + \frac{7!}{7!0!} (0.50166)^7 = \]

\[0.2743 + 0.1657 + 0.0556 + 0.0080 = 0.5036. \]

10. First, \(\mu = 801(0.50166) = 401.83 \) and \(\sigma = 14.151 \). Enter 400.5 in the ‘Above’ box of the normal curve website; the approximate answer is 0.5374.

For the exact answer, enter \(n = 801 \), \(p = 0.50166 \) and \(x = 401 \) at the website. The result is

\[P(X \geq 401) = 0.5374. \]

The approximation is exact (correct) to four digits.

Even with a sample of size 801 a projection is barely better than tossing a coin.
Chapter 3 Solutions to Homework;
SPRING 2012

1. First, $\hat{p} = 220/400 = 0.55$ and $\hat{q} = 1 - 0.55 = 0.45$. Next,

$$\sqrt{\hat{p}\hat{q}}/n = \sqrt{(0.55)(0.45)/400} = 0.02487.$$

Thus, the CIs are:

$$0.550 \pm 1.645(0.02487) = 0.550 \pm 0.041 = 0.509, 0.591.$$

$$0.550 \pm 1.96(0.02487) = 0.550 \pm 0.049 = 0.501, 0.599.$$

$$0.550 \pm 2.576(0.02487) = 0.550 \pm 0.064 = 0.486, 0.614.$$

2. First, $\hat{p} = 880/1600 = 0.55$ and $\hat{q} = 1 - 0.55 = 0.45$. Next,

$$\sqrt{\hat{p}\hat{q}}/n = \sqrt{(0.55)(0.45)/1600} = 0.01244.$$

Thus, the CIs are:

$$0.550 \pm 1.645(0.01244) = 0.550 \pm 0.020 = 0.530, 0.570.$$

$$0.550 \pm 1.96(0.01244) = 0.550 \pm 0.024 = 0.526, 0.574.$$

$$0.550 \pm 2.576(0.01244) = 0.550 \pm 0.032 = 0.518, 0.582.$$

With \hat{p} unchanged, the effect of a four-fold increase in n is that each CI becomes one-half as wide.

3. Below are the CIs; in each case the 90% is listed first.

(a) $[0.131, 0.406]; [0.115, 0.434]$.

(b) $[0.164, 0.355]; [0.150, 0.374]$.

(c) $[0.483, 0.723]; [0.461, 0.742]$.

4. (a) $[0.000, 0.190]$.

(b) $[0.000, 0.151]$.

(c) $[0.000, 0.269]$.

5. We are given that

$$0.03925 = 1.282\sqrt{\hat{p}\hat{q}}/n;$$

Thus,

$$\sqrt{\hat{p}\hat{q}}/n = 0.03925/1.282 = 0.03062.$$

Thus, the CIs are \hat{p}±

$$1.645(0.03062) = 0.05036;$$

$$1.96(0.03062) = 0.06001; \text{ and}$$

$$2.326(0.03062) = 0.07122.$$

6. From above,

$$0.03062 = \sqrt{0.25(0.75)/n}.$$

Square both sides and solve for n. The result is $n = 200$.

7. (a) The upper bound is 0.3942.

(b) The upper bound is 0.0466

(c) The upper bound is 0.0047

(d) The upper bound is 0.0005

(e) The upper bound is approximately $4.7/n$. The approximation is not very good for $n = 10$, but is good for $n \geq 100$.

5
Chapter 4 Solutions to Homework;
SPRING 2012

1. The mean is $\theta = 49$. The variance is $\theta = 49$. The standard deviation is $\sqrt{\theta} = \sqrt{49} = 7$.

2. For (a)–(c) go to the website and type 20 for both x and the average rate of success.

 (a) $P(X = 20) = 0.0888$.
 (b) $P(X \leq 20) = 0.5591$.
 (c) $P(X > 20) = 0.4409$.

 (d) There are several ways to get the answer. I suggest:

 $$P(16 \leq X \leq 24) = P(X \leq 24) - P(X \leq 15).$$

 We will need to use the website twice; we get $0.8432 - 0.1565 = 0.6867$.

3. In order to use the normal curve, we need to remember that for the Poisson, $\mu = \theta$ and $\sigma = \sqrt{\theta}$. Thus, for this problem, $\mu = 64$ and $\sigma = 8$.

 (a) Using the normal curve with the continuity correction, we write

 $$P(X > 75) = P(X \geq 75.5).$$

 This is approximated by the area under our normal curve above 75.5, which is 0.0753.

 The website easily gives us the exact probability: enter 75 for x and 64 for the average rate of success; the answer is 0.0781. The approximation is pretty good.

 (b) First write

 $$P(60 < X < 70) =$$

 $P(60.5 < X < 69.5) =$

 This is approximated by 0.4232

 We must use the website twice to get the exact answer. I type in 70 and then 60 for x, using 64 for the average rate of success both times. The result is $0.7576 - 0.3371 = 0.4205$. The approximation is pretty good.

4. (a) For 98%, $z^* = 2.326$. Thus, the SNC CI for θ is

 $$72 \pm 2.326\sqrt{72} = 72 \pm 19.74 = [52.26, 91.74].$$

 (b) The exact CI is $[53.74, 94.33]$. This typically happens; the approximation, compared to the exact, makes the lower and upper bounds smaller.

5. As discussed in the Course Notes, Tim’s θ is the product of rate and time: $5(4.5) = 22.5$. We obtain $P(X = 26) = 0.0602$.

6. Now Tim has observed the process for $4.5 + 1.75 = 6.25$ hours. The θ is now $5(6.25) = 31.25$. We find $P(Y \leq 30) = 0.4583$.

7. The 95% exact CI for θ is $[28.58, 54.47]$. This is the CI for 6.25 times the rate. In symbols, the CI asserts:

 $$28.58 \leq 6.25 \text{(rate)} \leq 54.47.$$

 Dividing thru by 6.25 gives $28.58/6.25 = 4.57$ and $54.47/6.25 = 8.72$. Thus, $[4.57, 8.72]$ is the 95% CI for the rate; because the rate is 5, the CI is correct.
Chapter 4 Solutions to Homework Continued

8. In each of the solutions below, I first obtain the 95% CI for θ, the parameter for the total. Then I substitute $\lambda = \theta/5$ to obtain the CI for the rate.

(a) For θ:

$$23292 \pm 1.96\sqrt{23292} =$$

$$23292 \pm 299 = [22993, 23591].$$

For λ: [4599, 4718].

(b) For θ:

$$520 \pm 1.96\sqrt{520} =$$

$$520 \pm 44.7 = [475.3, 564.7].$$

For λ: [95.1, 112.9].

(c) For θ:

$$404 \pm 1.96\sqrt{404} =$$

$$404 \pm 39.4 = [364.6, 443.4].$$

For λ: [72.9, 88.7].

(d) For θ, the approximate CI is:

$$54 \pm 1.96\sqrt{54} =$$

$$54 \pm 14.4 = [39.6, 68.4].$$

For λ: [7.92, 13.68].

For θ, the exact CI is [40.57, 70.46].

For λ: [8.11, 14.09].
Chapter 5 Solutions to Homework;
SPRING 2012

1. (a) Type 5 into the df box and 12 into the box on the lower left. The answer is 0.0348.
(b) Type 8 into the df box and 16.721 into the box on the lower left. The answer is 0.0332.
(c) Type 10 into the df box and 21.12 into the box on the lower left. The answer is 0.0203.

2. (a) Type 10 into the df box and 0.01 into the box on the lower right. The answer is 23.21.
(b) Type 11 into the df box and 0.05 into the box on the lower right. The answer is 19.68.
(c) Type 9 into the df box and 0.10 into the box on the lower right. The answer is 14.68.

3. The critical region is $\chi^2 \geq \chi^2_{0.01}(5) = 15.09$.

Because I am lazy, I typed my O’s and hypothesized probabilities (all equal to 0.2) into the Goodness of Fit calculator on the web. I obtained $\chi^2 = 9.79$ with $df = 4$. This website also tells me that the P-value equals 0.0441. Because 9.79 > 7.779 my decision is to reject the null hypothesis and conclude that, even after deleting the outcome 6, my white die is not balanced and fair; there is a surplus of the outcome 1.

For practice you should calculate a few values of $(O - E)^2/E$. Remember, each E equals 756(0.2) = 151.2.

(c) The ELC is very bad for this die. This is mostly because of the large frequency of outcome 6. After deleting the outcome 6, the ELC is borderline inadequate because of the surplus of outcome 1. Deleting both 1 and 6 (details not shown) gives $\chi^2 = 2.58$ with $df = 3$ and the P-value equal to 0.461. To summarize: the die yields way too many 6’s; somewhat too many 1’s; and the remaining possibilities, 2, 3, 4 and 5, appear to be equally likely.

4. (a) There are 244 successes in 1000 trials, giving $\hat{p} = 0.244$ and $\hat{q} = 0.756$. The 95% confidence interval for p_6 is $0.244 \pm 0.026 = [0.218, 0.270]$.

The value of p_6 seems to be much larger than 1/6 = 0.167.
(b) The critical region is $\chi^2 \geq \chi^2_{0.10}(4) = 7.779$.

Because I am lazy, I typed my O’s and hypothesized probabilities (all equal to 0.2) into the Goodness of Fit calculator on the web. I obtained $\chi^2 = 9.79$ with $df = 4$. This website also tells me that the P-value equals 0.0441. Because 9.79 > 7.779 my decision is to reject the null hypothesis and conclude that, even after deleting the outcome 6, my white die is not balanced and fair; there is a surplus of the outcome 1.
Chapter 5 Solutions to Homework Continued

5. First, the hypothesized probabilities are a, $2a$ and a. Because these must sum to one, $a = 0.25$. The null hypothesis states that the probability of black is 0.25, the probability of brown is 0.50 and the probability of white is 0.25.

For $\alpha = 0.05$ the critical region is

$$\chi^2 \geq \chi^2_{0.05}(2) = 5.991.$$

Next, $n = 40 + 59 + 42 = 141$, giving E’s of 35.25, 70.50 and 35.25. Below are the details for the computation of χ^2.

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Black</th>
<th>Brown</th>
<th>White</th>
</tr>
</thead>
<tbody>
<tr>
<td>O_i</td>
<td>40</td>
<td>59</td>
<td>42</td>
</tr>
<tr>
<td>E_i</td>
<td>35.25</td>
<td>70.50</td>
<td>35.25</td>
</tr>
<tr>
<td>$O_i - E_i$</td>
<td>-4.75</td>
<td>-11.50</td>
<td>6.75</td>
</tr>
<tr>
<td>$(O_i - E_i)^2$</td>
<td>22.56</td>
<td>132.25</td>
<td>45.56</td>
</tr>
<tr>
<td>$(O_i - E_i)^2/E_i$</td>
<td>0.640</td>
<td>1.876</td>
<td>1.292</td>
</tr>
</tbody>
</table>

Summing the values in the last row, I get $\chi^2 = 3.808$, so I fail to reject the null. Going to the Chi-Squared area calculator, the P-value is found to be 0.149.
Chapter 6 Solutions to Homework; SPRING 2012

1. (a) Below is the 4×2 table.

<table>
<thead>
<tr>
<th>Quarter</th>
<th>S</th>
<th>F</th>
<th>Total</th>
<th>\hat{p}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>35</td>
<td>15</td>
<td>50</td>
<td>0.70</td>
</tr>
<tr>
<td>2nd</td>
<td>29</td>
<td>21</td>
<td>50</td>
<td>0.58</td>
</tr>
<tr>
<td>3rd</td>
<td>21</td>
<td>29</td>
<td>50</td>
<td>0.42</td>
</tr>
<tr>
<td>4th</td>
<td>16</td>
<td>34</td>
<td>50</td>
<td>0.32</td>
</tr>
</tbody>
</table>

Using the Chi-Squared site, we find that $\chi^2 = 17.022$ with $r - 1 = 4 - 1 = 3$ degrees of freedom, giving a P-value of 0.0007. There is very strong evidence in support of changing p and I reject the null hypothesis of constant p.

(b) Below is the 2×2 table.

<table>
<thead>
<tr>
<th>Half</th>
<th>S</th>
<th>F</th>
<th>Total</th>
<th>\hat{p}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>64</td>
<td>36</td>
<td>100</td>
<td>0.64</td>
</tr>
<tr>
<td>2nd</td>
<td>37</td>
<td>63</td>
<td>100</td>
<td>0.37</td>
</tr>
</tbody>
</table>

Using the Fisher’s test, we find a P-value of 0.0002. There is very strong evidence in support of changing p and I reject the null hypothesis of constant p.

(c) Below is the memory table.

<table>
<thead>
<tr>
<th>Previous</th>
<th>Current</th>
<th>S</th>
<th>F</th>
<th>Total</th>
<th>\hat{p}</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>53</td>
<td>48</td>
<td></td>
<td>101</td>
<td>0.52</td>
</tr>
<tr>
<td>F</td>
<td>47</td>
<td>51</td>
<td></td>
<td>98</td>
<td>0.48</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>99</td>
<td></td>
<td>199</td>
<td></td>
</tr>
</tbody>
</table>

Fisher’s test gives a P-value of 0.5717.

(d) Our examinations in (a) and (b) both detected the changing p.

2. (a) Below is the 4×2 table.

<table>
<thead>
<tr>
<th>Quarter</th>
<th>S</th>
<th>F</th>
<th>Total</th>
<th>\hat{p}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>34</td>
<td>16</td>
<td>50</td>
<td>0.68</td>
</tr>
<tr>
<td>2nd</td>
<td>24</td>
<td>26</td>
<td>50</td>
<td>0.48</td>
</tr>
<tr>
<td>3rd</td>
<td>30</td>
<td>20</td>
<td>50</td>
<td>0.60</td>
</tr>
<tr>
<td>4th</td>
<td>25</td>
<td>25</td>
<td>50</td>
<td>0.50</td>
</tr>
</tbody>
</table>

Using the Chi-Squared site, we find that $\chi^2 = 5.269$ with $r - 1 = 4 - 1 = 3$ degrees of freedom, giving a P-value of 0.1531. There is some evidence in support of changing p, but not enough to reject the null hypothesis of constant p.

(b) Below is the 2×2 table.

<table>
<thead>
<tr>
<th>Half</th>
<th>S</th>
<th>F</th>
<th>Total</th>
<th>\hat{p}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>58</td>
<td>42</td>
<td>100</td>
<td>0.58</td>
</tr>
<tr>
<td>2nd</td>
<td>55</td>
<td>45</td>
<td>100</td>
<td>0.55</td>
</tr>
</tbody>
</table>

Using the Fisher’s test, we find a P-value of 0.7755. There is very weak evidence in support of changing p and I do not reject the null hypothesis of constant p.

(c) Below is the memory table.

<table>
<thead>
<tr>
<th>Previous</th>
<th>Current</th>
<th>S</th>
<th>F</th>
<th>Total</th>
<th>\hat{p}</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>64</td>
<td>49</td>
<td></td>
<td>113</td>
<td>0.57</td>
</tr>
<tr>
<td>F</td>
<td>49</td>
<td>37</td>
<td></td>
<td>86</td>
<td>0.57</td>
</tr>
<tr>
<td>Total</td>
<td>113</td>
<td>86</td>
<td></td>
<td>199</td>
<td></td>
</tr>
</tbody>
</table>

Fisher’s test gives a P-value of 1.

(d) Our examinations in (a) and (b) both failed to detect the changing value of p.

11
3. (a) Below is the 6×2 table.

<table>
<thead>
<tr>
<th>Sixth</th>
<th>S</th>
<th>F</th>
<th>Total</th>
<th>\hat{p}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>15</td>
<td>12</td>
<td>27</td>
<td>0.556</td>
</tr>
<tr>
<td>2nd</td>
<td>16</td>
<td>11</td>
<td>27</td>
<td>0.593</td>
</tr>
<tr>
<td>3rd</td>
<td>12</td>
<td>15</td>
<td>27</td>
<td>0.444</td>
</tr>
<tr>
<td>4th</td>
<td>11</td>
<td>16</td>
<td>27</td>
<td>0.407</td>
</tr>
<tr>
<td>5th</td>
<td>11</td>
<td>16</td>
<td>27</td>
<td>0.407</td>
</tr>
<tr>
<td>6th</td>
<td>15</td>
<td>12</td>
<td>27</td>
<td>0.556</td>
</tr>
</tbody>
</table>

Using the Chi-Squared site, we find that $\chi^2 = 3.754$ with $r-1 = 6-1 = 5$ degrees of freedom, giving a P-value of 0.5853. There is very weak evidence in support of changing p; not nearly enough to reject the null hypothesis of constant p.

(b) Below is the 3×2 table.

<table>
<thead>
<tr>
<th>Third</th>
<th>S</th>
<th>F</th>
<th>Total</th>
<th>\hat{p}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>31</td>
<td>23</td>
<td>54</td>
<td>0.574</td>
</tr>
<tr>
<td>2nd</td>
<td>23</td>
<td>31</td>
<td>54</td>
<td>0.426</td>
</tr>
<tr>
<td>3rd</td>
<td>26</td>
<td>28</td>
<td>54</td>
<td>0.481</td>
</tr>
</tbody>
</table>

Using the Chi-Squared site, we find that $\chi^2 = 2.42$ with $r-1 = 3-1 = 2$ degrees of freedom, giving a P-value of 0.2982. There is some evidence in support of changing p, but not nearly enough to reject the null hypothesis of constant p.

(c) Below is the 2×2 table.

<table>
<thead>
<tr>
<th>Half</th>
<th>S</th>
<th>F</th>
<th>Total</th>
<th>\hat{p}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>43</td>
<td>38</td>
<td>81</td>
<td>0.531</td>
</tr>
<tr>
<td>2nd</td>
<td>37</td>
<td>44</td>
<td>81</td>
<td>0.457</td>
</tr>
</tbody>
</table>

Using the Fisher’s test, we find a P-value of 0.4321. There is only weak evidence in support of changing p.

(d) Below is the memory table.

<table>
<thead>
<tr>
<th></th>
<th>Current</th>
<th>Previous</th>
<th>Total</th>
<th>\hat{p}</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>39</td>
<td>40</td>
<td>79</td>
<td>0.494</td>
</tr>
<tr>
<td>F</td>
<td>41</td>
<td>41</td>
<td>82</td>
<td>0.500</td>
</tr>
<tr>
<td>Total</td>
<td>80</td>
<td>81</td>
<td>161</td>
<td></td>
</tr>
</tbody>
</table>

Fisher’s test gives a P-value of 1.

4. (a) Below is the 4×2 table.

<table>
<thead>
<tr>
<th>Quarter</th>
<th>S</th>
<th>F</th>
<th>Total</th>
<th>\hat{p}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>19</td>
<td>6</td>
<td>25</td>
<td>0.76</td>
</tr>
<tr>
<td>2nd</td>
<td>9</td>
<td>16</td>
<td>25</td>
<td>0.36</td>
</tr>
<tr>
<td>3rd</td>
<td>11</td>
<td>14</td>
<td>25</td>
<td>0.44</td>
</tr>
<tr>
<td>4th</td>
<td>8</td>
<td>17</td>
<td>25</td>
<td>0.32</td>
</tr>
</tbody>
</table>

Using the Chi-Squared site, we find that $\chi^2 = 12.003$ with $r-1 = 4-1 = 3$ degrees of freedom, giving a P-value of 0.0074. There is very strong evidence in support of changing p and I reject the null hypothesis of constant p.

(b) Below is the 2×2 table.

<table>
<thead>
<tr>
<th>Quarter</th>
<th>S</th>
<th>F</th>
<th>Total</th>
<th>\hat{p}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>28</td>
<td>22</td>
<td>50</td>
<td>0.56</td>
</tr>
<tr>
<td>2nd</td>
<td>19</td>
<td>31</td>
<td>50</td>
<td>0.38</td>
</tr>
</tbody>
</table>

Using Fisher’s test we find a P-value of 0.1085.

(c) Below is the memory table.

<table>
<thead>
<tr>
<th></th>
<th>Current</th>
<th>Previous</th>
<th>Total</th>
<th>\hat{p}</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>26</td>
<td>20</td>
<td>46</td>
<td>0.57</td>
</tr>
<tr>
<td>F</td>
<td>20</td>
<td>33</td>
<td>53</td>
<td>0.38</td>
</tr>
<tr>
<td>Total</td>
<td>46</td>
<td>53</td>
<td>99</td>
<td></td>
</tr>
</tbody>
</table>

There is very strong positive memory; the P-value, 0.0717, just barely fails to achieve statistical significance.

5. Table 1 is correct for (a) and (d); Table 2 is correct for (b) and (e); Table 3 is correct for (c) and (f).
Chapter 7 Solutions to Homework; SPRING 2012

1. These are BT with p known to equal $3/16$ and $m = 800$. To obtain the point prediction, we begin by calculating $mp = 800(3/16) = 150$. B/c this is an integer it is our point prediction. The 90% prediction interval is $150 \pm 1.645(11.04) = 150 \pm 18.2 = [132, 168]$.

2. These are BT with p known to equal $9/16$ and $m = 320$. To obtain the point prediction, we begin by calculating $mp = 320(9/16) = 180$. B/c this is an integer it is our point prediction. The 95% prediction interval is $180 \pm 1.96(8.87) = 180 \pm 17.4 = [163, 197]$.

3. (a) These are BT with p unknown. Our past data are $n = 736$ and $x = 511$, which give $\hat{p} = 511/736 = 0.694$. To obtain the point prediction, we begin by calculating $m\hat{p} = 695(0.694) = 482.3$. B/c this is not an integer, our ad-hoc point prediction is 482. (Rounding to 483 is ok too.) The 80% prediction interval is $482.3 \pm 1.282(12.15)(1.394) = 482.3 \pm 21.7 = [460, 504.0] = [461, 504]$, after rounding.

We assume that each year Malone’s shots were BT with the same p for both years.

(b) The point prediction is too small by 34 and the prediction interval also is incorrect. (BTW, the 95% prediction interval would have 515.5 for its upper bound before rounding. After rounding to 516 it would be barely correct, but correct.)

4. (a) First, $\hat{p} = 49/480 = 0.102$ The SNC approximation gives $0.102 \pm 1.96\sqrt{0.102(0.982)/480} =$ $0.102 \pm 1.96(0.0138) = 0.102 \pm 0.027 = [0.075, 0.129]$. BTW, the exact CI is $[0.076, 0.132]$, which is very close to the SNC answer.

(b) First, $\hat{p} = 73/476 = 0.153$ The SNC approximation gives $0.153 \pm 1.96\sqrt{0.153(0.847)/476} =$ $0.153 \pm 1.96(0.0165) = 0.153 \pm 0.032 = [0.121, 0.185]$. BTW, the exact CI is $[0.122, 0.189]$, which is very close to the SNC answer. Note that whether you use the approximate or exact method, the CI’s from (a) and (b) overlap.

(c) These are BT with p unknown. Our past data are $n = 480$ and $x = 49$, which give $\hat{p} = 0.102$. To obtain the point prediction, we begin by calculating $m\hat{p} = 476(0.102) = 48.6$. B/c this is not an integer, our ad-hoc point prediction is 49. (Rounding to 48 is ok too.)

The 98% prediction interval is $48.6 \pm 2.326\sqrt{48.6(0.898)/476} =$ $2.326\sqrt{48.6(0.898)/476} \sqrt{1 + (476/480) =$
Chapter 7 Solutions to Homework Continued

\[48.6 \pm 2.326(6.06)(1.411) = \]

\[48.6 \pm 21.7 = [26.9, 70.3] = \]

[27, 70], after rounding.

Obviously, the point prediction was much too small and the prediction interval is incorrect too. But I conjecture that most baseball fans would be amazed with the width of this interval.
Chapter 9 Solutions to Homework; SPRING 2012

1. First, I will create the table of counts.

<table>
<thead>
<tr>
<th>Year</th>
<th>Correct</th>
<th>Incorrect</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1983</td>
<td>602</td>
<td>470</td>
<td>1072</td>
</tr>
<tr>
<td>1982</td>
<td>796</td>
<td>793</td>
<td>1589</td>
</tr>
<tr>
<td>Total</td>
<td>1398</td>
<td>1263</td>
<td>2661</td>
</tr>
</tbody>
</table>

(a) The 95% CI is:
\[
0.562 - 0.501 \pm 1.96 \sqrt{\frac{0.562(0.438)}{1072} + \frac{0.501(0.499)}{1589}} = 0.061 \pm 0.039 = [0.022, 0.100].
\]

(b) I entered the table of counts into the Fisher’s website and obtained 0.0010 as the P-value for the alternative \(\neq \) (2-tail). Thus, I would reject for \(\alpha = 0.05 \).

2. First, I will create the table of counts.

<table>
<thead>
<tr>
<th>Year</th>
<th>Yes</th>
<th>No</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1983</td>
<td>695</td>
<td>377</td>
<td>1072</td>
</tr>
<tr>
<td>1984</td>
<td>1553</td>
<td>1079</td>
<td>2632</td>
</tr>
<tr>
<td>Total</td>
<td>2248</td>
<td>1456</td>
<td>3704</td>
</tr>
</tbody>
</table>

(a) The 95% CI is:
\[
0.648 - 0.590 \pm 1.96 \sqrt{\frac{0.648(0.352)}{1072} + \frac{0.590(0.410)}{2632}} = 0.058 \pm 0.034 = [0.024, 0.092].
\]

(b) The awareness ‘definitely’ did decrease; why? My guess is that many subjects did not view the 1982 law as being recent; they figured they must not have heard of a subsequent law. Just my guess.

3. First, I will present the table of counts.

<table>
<thead>
<tr>
<th>Leader Win?</th>
<th>Year</th>
<th>Yes</th>
<th>No</th>
<th>Total</th>
<th>(\hat{p})</th>
</tr>
</thead>
<tbody>
<tr>
<td>American</td>
<td>458</td>
<td>69</td>
<td>527</td>
<td>0.869</td>
<td></td>
</tr>
<tr>
<td>National</td>
<td>390</td>
<td>60</td>
<td>450</td>
<td>0.867</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>848</td>
<td>129</td>
<td>977</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The 95% CI is:
\[
0.869 - 0.867 \pm 1.96 \sqrt{\frac{0.869(0.131)}{527} + \frac{0.867(0.133)}{450}} = 0.002 \pm 0.043 = [-0.041, 0.045].
\]

4. (a) First, \(\hat{p}_1 = \frac{251}{285} = 0.881 \) and \(\hat{p}_2 = \frac{48}{53} = 0.906 \). The 95% CI is (0.881 - 0.906)±
\[
1.96 \sqrt{\frac{0.881(0.119)}{285} + \frac{0.906(0.094)}{53}} = -0.025 \pm 1.96(0.0444) = -0.025 \pm 0.087 = [-0.112, 0.062].
\]

We must assume independent BT for each row of data.

(b) From the website, the exact P-value is 0.8149. The evidence for the alternative is very weak. Even with the alternative <, the exact P-value is large: 0.4020.
Chapter 9 Solutions to Homework Cont.

5. (a) First, $\hat{p}_1 = \frac{54}{91} = 0.593$ and $\hat{p}_2 = \frac{49}{80} = 0.612$. The 95% CI is $(0.593 - 0.612) \pm 1.96 \sqrt{\frac{0.593(0.407)}{91} + \frac{0.612(0.388)}{80}} = -0.019 \pm 1.96(0.0750) = -0.019 \pm 0.147 = [-0.166, 0.128].$

(b) From the website, the exact P-value is 0.8759. The evidence for the alternative is very weak. Even with the alternative $<$, the exact P-value is large: 0.4613.

6. First, Bird was far superior to Robey at free throw shooting. As a result, 84.3% of Bird’s data are in the first row of his table, compared to only 53.2% of Robey’s data. Both players performed slightly better after a miss than after a hit, but the difference is small for both players, and does not come even remotely close to being statistically significant.

7. First, I will complete the table.

<table>
<thead>
<tr>
<th>Second Shot</th>
<th>S</th>
<th>F</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Shot</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Success</td>
<td>305</td>
<td>71</td>
<td>376</td>
</tr>
<tr>
<td>Failure</td>
<td>97</td>
<td>36</td>
<td>133</td>
</tr>
<tr>
<td>Total</td>
<td>402</td>
<td>107</td>
<td>171</td>
</tr>
</tbody>
</table>

Next, $\hat{p}_1 = \frac{305}{376} = 0.811$ and $\hat{p}_2 = \frac{97}{133} = 0.729$. The 95% CI is $(0.811 - 0.729) \pm 1.96 \sqrt{\frac{0.811(0.189)}{376} + \frac{0.729(0.271)}{133}} = 0.082 \pm 1.96(0.0435) = 0.082 \pm 0.085 = [-0.003, 0.167].$

We must assume independent BT for each row of data. When you recall that the data in each row is a mixture of two players and that one player has a much larger p than the other player, this makes no sense. Furthermore, row two has much more of its data from the worse shooter! But, in my experience, often people find data and just analyze it without thinking. So if someone says, “Here are some data on free throw shooting in the NBA; what do you think?” It takes some intellectual courage to reply, “I need more information.”

8. In both component tables (tables for individual players) $\hat{p}_1 < \hat{p}_2$, but in the collapsed table, $\hat{p}_1 > \hat{p}_2$. This reversal is Simpson’s Paradox.

9. In the collapsed table the two row totals are equal. Thus, it is easy to see that $\hat{p}_1 > \hat{p}_2$. So, we need a reversal, $\hat{p}_1 < \hat{p}_2$, in both component tables.

In the A table, this means $c/225 > 24/120$ or $c > 45$ or $c \geq 46$.

In the B table, this means $d/105 > 75/210$ or $d > 37.5$ or $d \geq 38$.

Consistency requires that $c + d = 86$. There are multiple ways to satisfy these three conditions: $c = 46, d = 40$; $c = 47, d = 39$; and $c = 48, d = 38$.

16
Chapter 9 Solutions to Homework Cont.

10. In the collapsed table

\[\hat{p}_1 = \frac{180}{500} = 0.36; \hat{p}_2 = \frac{117}{300} = 0.39. \]

Thus, for a reversal we need \(\hat{p}_1 > \hat{p}_2 \) in both component tables.

In the A table, this means

\[\frac{c}{180} < \frac{130}{260} \text{ or } c < 90 \text{ or } c \leq 89. \]

In the B table, this means

\[\frac{d}{120} < \frac{50}{240} \text{ or } d < 25 \text{ or } d \leq 24. \]

Consistency requires that \(c + d = 117 \). It is impossible to satisfy these three conditions because \(c \leq 89 \) and \(d \leq 24 \) imply that

\[c + d \leq 89 + 24 = 113 < 117. \]
Chapter 10 Solutions to Homework;
SPRING 2012

1. (a) 4.
(b) It is impossible for a relative frequency to exceed 1.
(c) The area of the rectangle is $0.1(4) = 0.4$. Thus, the relative frequency of the interval is 0.4. The frequency is the product of the relative frequency and n: $0.4(200) = 80$.

2. (a) The median is the average of the observations in positions 25 and 26:

\[
\frac{3.01 + 3.18}{2} = 3.095
\]

(b) First, we create the table:

<table>
<thead>
<tr>
<th>Class Interval</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00–1.00</td>
<td>14</td>
</tr>
<tr>
<td>1.00–2.00</td>
<td>4</td>
</tr>
<tr>
<td>2.00–3.00</td>
<td>6</td>
</tr>
<tr>
<td>3.00–4.00</td>
<td>8</td>
</tr>
<tr>
<td>4.00–5.00</td>
<td>18</td>
</tr>
<tr>
<td>Total</td>
<td>50</td>
</tr>
</tbody>
</table>

(c) Go to next page for solution.

3. (a) First, $0.25(n) = 12.5$, which we round up to 13; $0.75(n) = 37.5$, which we round up to 38. Thus, $Q_1 = 0.93$ and $Q_3 = 4.45$.
(b) The interval $\bar{x} \pm s = 2.76 \pm 1.78 = [0.98, 4.54]$. By counting, 13 observations are too small to be in this interval and 12 are too large to be in this interval. Thus, 25, or 50%, of the data are in the interval. This is much smaller than the 68% predicted by the empirical rule. This is no surprise because our histogram has two separated peaks.

4. (a) The interval is $[17.56 - 13.23, 17.56 + 2(13.23)] = [4.33, 44.02]$. By counting, 1 observation is too small and 3 observations are too large to be in this interval. Thus, 29 observations, or 88% of the data, are in the interval.

(b) The median is the number in position 17: 12.64. Next, $0.25(33) = 8.25$, which we round up to 9. Thus, $Q_1 = 7.57$. And $0.75(33) = 24.75$, which we round up to 25. Thus, $Q_3 = 21.50$.

(c) To find Q_1 we still count to position 9, remembering that the data have changed; we get 8.27. The median is still in position 17, which is now 13.59. The mean is a bit trickier.

We have increased the total of the 33 observations by 10, so the mean increases by $10/33 = 0.30$, giving us a new mean of 17.86.

(d) Before any changes to the data, the total of the 33 observations is $33(17.56) = 579.48$. The change in (c) increases the total to 589.48. The change in (d) decreases the total to $589.48 - 56.85 = 532.63$. Thus, the new mean is $532.63/32 = 16.645$.
Chapter 10 Solutions to Homework Cont.

2. (Cont.) (c) First, we create the table:

<table>
<thead>
<tr>
<th>Class Interval</th>
<th>Width (w)</th>
<th>Frequency (freq)</th>
<th>Relative Freq. ($rf = \frac{\text{freq}}{n}$)</th>
<th>Density (rf/w)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00–0.50</td>
<td>0.5</td>
<td>11</td>
<td>0.22</td>
<td>0.44</td>
</tr>
<tr>
<td>0.50–2.50</td>
<td>2.0</td>
<td>8</td>
<td>0.16</td>
<td>0.08</td>
</tr>
<tr>
<td>2.50–4.50</td>
<td>2.0</td>
<td>19</td>
<td>0.38</td>
<td>0.19</td>
</tr>
<tr>
<td>4.50–5.00</td>
<td>0.5</td>
<td>12</td>
<td>0.24</td>
<td>0.48</td>
</tr>
<tr>
<td>Total</td>
<td>---</td>
<td>$n = 50$</td>
<td>1.00</td>
<td>---</td>
</tr>
</tbody>
</table>

Chapter 11 Solutions to Homework;
SPRING 2012

1. (a) First, we note that \(df = n - 1 = 39 \). From the online calculator, for the 95% CI, \(t^* = 2.023 \). For future use, note that \(29.87/\sqrt{40} = 4.7229 \). Thus, the CI is
\[
106.87 \pm 2.023(4.7229) = 106.87 \pm 9.55 = [97.32, 116.42].
\]
(b) From the online calculator, for the 99% CI, \(t^* = 2.708 \). Thus, the CI is
\[
106.87 \pm 2.708(4.7229) = 106.87 \pm 12.79 = [94.08, 119.66].
\]
(c) The observed value of the test statistic is
\[
t = \frac{106.87 - 100}{4.7229} = 1.455.
\]
From the online calculator, the area under the \(t(39) \) curve to the right of 1.455 is 0.0768; this is the approximate P-value.
(d) The observed value of the test statistic is
\[
t = \frac{106.87 - 120}{4.7229} = -2.780.
\]
From the online calculator, the area under the \(t(39) \) curve to the left of -2.780 is 0.0042; this is the approximate P-value.
(e) We note that 95% gives \(z^* = 1.96 \). Thus,
\[
k' = \frac{41}{2} - \frac{1.96 \sqrt{40}}{2} = 20.5 - 6.20 = 14.30. \quad \text{We round } k' \text{ down to } k = 14. \text{ The 14th smallest observation is 107 and the 14th largest observation is 122. Thus, the CI is } [107, 122].
\]

2. (a) First, we note that \(df = n - 1 = 14 \). From the online calculator, for the 90% CI, \(t^* = 1.761 \). For future use, note that \(0.3253/\sqrt{15} = 0.0840 \). Thus, the CI is
\[
7.10 \pm 1.761(0.0840) = 7.10 \pm 0.15 = [6.95, 7.25].
\]
(b) From the online calculator, for the 98% CI, \(t^* = 2.624 \). Thus, the CI is
\[
7.10 \pm 2.624(0.0840) = 7.10 \pm 0.22 = [6.88, 7.32].
\]
(c) The observed value of the test statistic is
\[
t = \frac{7.10 - 7.00}{0.0840} = 1.191.
\]
From the online calculator, the area under the \(t(14) \) curve to the right of 1.191 is 0.1267; this is the approximate P-value.
(d) The observed value of the test statistic is
\[
t = \frac{7.10 - 7.20}{0.0840} = -1.191.
\]
From above, the area under the \(t(14) \) curve to the right of \(|t| = 1.191 \) is 0.1267; twice this, 0.2534, is the approximate P-value.
(e) Because \(n < 21 \) we use Table 11.1 on page 136 of the Course Notes to obtain the exact CI. From the table, the possibilities for the confidence level are 99.3%, 96.5% and 88.2%. The last of these is the closest to 90%. The 88.2% CI is
\[
[x(5), x(11)] = [6.88, 7.23].
\]
Chapter 11 Solutions to Homework Cont.

3. (a) None of the lower bounds is > 90; thus, none of the CI’s is too large. One upper bound, 82, is < 90; thus, one of the CI’s is too small. Because one CI is incorrect, the other three must be correct. Or, by direct examination of the intervals, 90 is not in the first CI, but is in the other 3.

(b) With problems like this, you must save determining the correct intervals until the end. It does not matter whether you begin with too small or too large intervals.

One interval is too small, which means that one upper bound is too small. The smallest upper bound is 82; thus,

$$82 < \mu.$$

One interval is too large, which means that one lower bound is too large. The largest lower bound is 86; thus,

$$\mu < 86.$$

The remaining two CI’s must be the correct one. Thus, in addition to the two inequalities displayed earlier, we have

$$49 \leq \mu \leq 92 \text{ and } 57 \leq \mu \leq 95.$$

Finally, you apply the logic of ‘and’ which tells us that μ must be > 82 and < 86. Thus, the answer is

$$82 < \mu < 86.$$

(c) This solution illustrates a useful technique. Begin with any candidate for μ that is smaller than every lower bound, say 0. If $\mu = 0$ then there are no correct CI’s. As μ moves to the right there will continue to be no correct CI’s until a lower bound is met. The smallest lower bound is 43, so at $\mu = 43$ there will be one correct CI. This will continue until μ gets to 49 at which point a second CI will become correct. For a very long time, there will remain 2 or more correct CI’s. But when μ crosses 95 the first three CI’s will be too small and only the last CI will be correct. This last CI will remain correct until μ crosses its upper bound, 112. Thus, the answer is

$$43 \leq \mu < 49 \text{ or } 95 < \mu \leq 112.$$

4. (a) Nine CI’s are too large; one CI is too small. Thus, $18 - 9 - 1 = 8$ CI’s are correct.

(b) Well, 393 and 409 are too large, but 375 is not too large. Thus, $375 \leq \mu < 393$.

(c) All we know is that the upper bounds 351 and smaller are all too small. Thus, $351 < \mu$.

(d) All we know is that 344 is not too large; thus, $\mu \geq 344$.

5. (a) An interval is too small iff its upper bound is smaller than $\mu = 1.40$. By inspection, three upper bounds are smaller than 1.40.

(b) An interval is too large iff its lower bound is larger than $\mu = 1.40$. By inspection, two lower bounds are larger than 1.40.

(c) There are 20 intervals: $20 - 3 - 2 = 15$ are correct.
Solutions to Chapter 12 Homework;
SPRING 2012

1. (a) With \(n = 33, \) \(df = n - 1 = 32. \) From the calculator, the \(t^* \) for the 95% CI is \(t^* = 2.037. \) Thus, the CI is

\[
0.52 \pm 2.037 \left(\frac{0.733}{\sqrt{33}} \right) = \\
0.52 \pm 2.037 \left(0.1276 \right) = \\
0.52 \pm 0.26 = [0.26, 0.78].
\]

(b) With \(n = 34, \) \(df = n - 1 = 33. \) From the calculator, the \(t^* \) for the 95% CI is \(t^* = 2.035. \) Thus, the CI is

\[
0.04 \pm 2.035 \left(\frac{0.744}{\sqrt{34}} \right) = \\
0.04 \pm 2.035 \left(0.1276 \right) = \\
0.04 \pm 0.26 = [-0.22, +0.30].
\]

(c) Because both \(n_1 \) and \(n_2 \) exceed 19, we use Case 1. First, we calculate

\[
\sqrt{\frac{(0.733)^2}{33} + \frac{(0.744)^2}{34}} = 0.1804.
\]

The observed value of the test statistic is

\[
z = \frac{0.52 - 0.04}{0.1804} = 2.660.
\]

From the calculator, the area under the SNC to the right of 2.660 is 0.0039; double this to get the P-value for the third alternative: 0.0078.

(d) We use the calculation of the big square root from (c). This gives us

\[
0.48 \pm 1.96(0.1804) = 0.48 \pm 0.35 = [0.13, 0.83].
\]

2. (a) With \(n = 20, df = n - 1 = 19. \) From the calculator, the \(t^* \) for the 98% CI is \(t^* = 2.539. \) Thus, the CI is

\[
45.7 \pm 2.539 \left(\frac{22.74}{\sqrt{20}} \right) = \\
45.7 \pm 2.539 \left(5.0848 \right) = \\
45.7 \pm 12.9 = [32.8, 58.6].
\]

(b) The observed value of the test statistic is

\[
t = \frac{45.7 - 40.5}{5.0848} = 1.023.
\]

Using the calculator, the area under the \(t(19) \) curve to the right of 1.023 is 0.1596; this is our P-value.

3. (a) Put 16 in the top box; select the option ‘Area right of;’ enter 0.10 in the right box; and click on ‘Compute!’ The answer is \(t^* = 1.337. \)

(b) Put 31 in the top box; select the option ‘Area right of;’ enter 0.025 in the right box; and click on ‘Compute!’ The answer is \(t^* = 2.04. \)

(c) Put 18 in the top box; select the option ‘Area right of;’ enter 2.105 in the left box; and click on ‘Compute!’ The P-value is 0.0248.

(d) Put 32 in the top box; select the option ‘Area right of;’ enter 3.011 in the left box; and click on ‘Compute!’ The P-value is twice the number displayed: \(2(0.0025) = 0.0050. \)

(e) Put 33 in the top box; select the option ‘Area left of;’ enter –1.875 in the left box; and click on ‘Compute!’ The P-value is 0.0348.
Chapter 12 Solutions to Homework Cont.

4. (a) First, $df = 17$, giving $t^* = 2.11$ for the 95% CI. Second, $\bar{x} - \bar{y} = 4.50$.
Next,
\[
s_p^2 = \frac{6(6.5)^2 + 11(4)^2}{6 + 11} = 25.2647.
\]
Thus, $s_p = 5.026$. The 95% CI is
\[
4.50 \pm 2.11(5.026)\sqrt{1/7 + 1/12} = 4.50 \pm 2.11(2.391) = 4.50 \pm 5.04 = [-0.54, 9.54].
\]
The observed value of the test statistic is
\[
t = 4.50/2.391 = 1.882.
\]
Finally, we go to the t-calculator and enter 17 in the top box, 1.882 in the left box and select ‘Area right of.’ The result, in the right box, is 0.0385. Therefore, the P-value for $>$ is 0.0385; the P-value for $<$ is $1 - 0.0385 = 0.9615$; and the P-value for \neq is $2(0.0385) = 0.0770$.

(b) First, $df = 21$, giving $t^* = 2.08$ for the 95% CI. Second, $\bar{x} - \bar{y} = 1.20$.
Next,
\[
s_p^2 = \frac{16(11.5)^2 + 5(14)^2}{16 + 5} = 147.43.
\]
Thus, $s_p = 12.14$. The 95% CI is
\[
1.20 \pm 2.08(12.14)\sqrt{1/17 + 1/6} = 1.20 \pm 2.08(5.766) = 1.20 \pm 11.99 = [-10.79, 13.19].
\]
The observed value of the test statistic is
\[
t = 1.20/5.766 = 0.208.
\]

(c) First, $df = 27$, giving $t^* = 2.052$ for the 95% CI. Second, $\bar{x} - \bar{y} = -8.90$.
Next,
\[
s_p^2 = \frac{18(21.5)^2 + 9(18.2)^2}{18 + 9} = 418.58.
\]
Thus, $s_p = 20.46$. The 95% CI is
\[
-8.90 \pm 2.052(20.46)\sqrt{1/19 + 1/10} = -8.90 \pm 2.052(7.993) = -8.90 \pm 16.40 = [-25.30, 7.50].
\]
The observed value of the test statistic is
\[
t = -8.90/7.993 = -1.114.
\]
Finally, we go to the t-calculator and enter 27 in the top box, 0.208 in the left box and select ‘Area right of.’ The result, in the right box, is 0.4186. Therefore, the P-value for $>$ is 0.4186; the P-value for $<$ is $1 - 0.4186 = 0.5814$; and the P-value for \neq is $2(0.4186) = 0.8372$.

Finally, we go to the t-calculator and enter 21 in the top box, 0.208 in the left box and select ‘Area right of.’ The result, in the right box, is 0.0385. Therefore, the P-value for $>$ is 0.0385; the P-value for $<$ is $1 - 0.0385 = 0.9615$; and the P-value for \neq is $2(0.0385) = 0.0770$.

Finally, we go to the t-calculator and enter 27 in the top box, -1.114 in the left box and select ‘Area left of.’ The result, in the right box, is 0.1375. Therefore, the P-value for $<$ is 0.1375; the P-value for $>$ is $1 - 0.1375 = 0.8625$; and the P-value for \neq is $2(0.1375) = 0.2750$.

24
Chapter 12 Solutions to Homework Cont.

5. (a) Note that
\[s_{p,new}^2 = \frac{10s_1^2 + 24s_2^2}{34} = \frac{5s_1^2 + 12s_2^2}{17} = s_{p,old}^2. \]

(b) The half-width for the original entries is 17.00 =
\[2.567s_p\sqrt{(1/6) + (1/13)}. \]
Solving, we obtain
\[s_p = 13.418. \]
Thus, for the correct entries the half-width is
\[1.691(13.418)\sqrt{(1/11) + (1/25)} = 8.21. \]
Thus, the 90% confidence interval for the correct entries is
\[32.00 \pm 8.21. \]

6. (a) For paired data, \(df = n - 1 = 9 - 1 = 8 \), giving \(t^* = 2.306. \) Thus, the CI is
\[62.0 \pm 2.306(26.2/\sqrt{9}) = \]
\[62.0 \pm 20.1 = [41.9, 82.1]. \]
(b) We need to find the second smallest and second largest of the \(d \) values. The second smallest is 31 and the second largest is 65. Thus, the CI is \[[31, 65]. \]
The CI estimates the median of the population of differences. This is not the same as the difference of the population medians.

(c) For independent samples, \(df = n_1 + n_2 - 2 = 9 + 9 - 2 = 16, \) making \(t^* = 2.120. \) Thus, the CI is
\[62.0 \pm 2.120(39.03)(\sqrt{2/9}) = \]
\[62.0 \pm 39.0 = [23.0, 101.0]. \]
Pairing was very effective for these hypothetical data.

7. (a) For paired data, \(df = n - 1 = 8 - 1 = 7, \) giving \(t^* = 2.365. \) Thus, the CI is
\[44.0 \pm 2.365(18.9/\sqrt{8}) = \]
\[44.0 \pm 15.8 = [28.2, 59.8]. \]
(b) We need to find the second smallest and second largest of the \(d \) values. The second smallest is 31 and the second largest is 65. Thus, the CI is \[[31, 65]. \]
The CI estimates the median of the population of differences. This is not the same as the difference of the population medians.

(c) For independent samples, \(df = n_1 + n_2 - 2 = 8 + 8 - 2 = 14, \) making \(t^* = 2.145. \) Thus, the CI is
\[44.0 \pm 2.145(68.59)(\sqrt{2/8}) = \]
\[44.0 \pm 73.6 = [-29.6, 117.6]. \]
Pairing was very effective for these hypothetical data.
Solutions to Chapter 13 Homework; SPRING 2012

1. (a) \(\frac{453}{3614} = 0.125 \)
(b) \(\frac{3325}{3614} = 0.920 \)
(c) \(\frac{3126}{3614} = 0.865 \)
(d) \(\frac{254}{3614} = 0.070 \)
(e) \(\frac{35}{3161} = 0.011 \)
(f) \(\frac{199}{3325} = 0.060 \)
(g) \(\frac{254 + 3126}{3614} = 0.935 \)
(h) \(\frac{199}{35 + 199} = 0.850 \)

2. (a) The table is below.

<table>
<thead>
<tr>
<th></th>
<th>Don’t</th>
<th>Drive</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female</td>
<td>126</td>
<td>378</td>
<td>504</td>
</tr>
<tr>
<td>Male</td>
<td>234</td>
<td>162</td>
<td>396</td>
</tr>
<tr>
<td>Total</td>
<td>360</td>
<td>540</td>
<td>900</td>
</tr>
</tbody>
</table>

(b) The table is below.

<table>
<thead>
<tr>
<th></th>
<th>Don’t</th>
<th>Drive</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female</td>
<td>0.14</td>
<td>0.42</td>
<td>0.56</td>
</tr>
<tr>
<td>Male</td>
<td>0.26</td>
<td>0.18</td>
<td>0.44</td>
</tr>
<tr>
<td>Total</td>
<td>0.40</td>
<td>0.60</td>
<td>1.00</td>
</tr>
</tbody>
</table>

3. (a) We note that \(p_1 = \frac{12}{200} = 0.060 \) and \(p_2 = \frac{12}{800} = 0.015 \). Thus, the relative risk is \(\frac{0.060}{0.015} = 4 \). The odds ratio is \(\frac{12(788)}{188(12)} = 4.192 \).

(b) The point estimate is \(\hat{\theta} = \frac{207(310)}{90(193)} = 3.694 \), which is smaller than the actual value.

4. (a) We note that \(p_1 = \frac{30}{250} = 0.120 \) and \(p_2 = \frac{15}{750} = 0.020 \). Thus, the relative risk is \(\frac{0.12}{0.02} = 6 \). The odds ratio is \(\frac{30(735)}{220(15)} = 6.682 \).

(b) The point estimate is \(\hat{\theta} = \frac{207(310)}{90(193)} = 8.822 \), which is larger than the actual value.
Chapter 13 Solutions to Homework Cont.

(c) First,
\[\hat{\lambda} = \log \hat{\theta} = \log(8.822) = 2.177. \]
The estimated standard error of \(\hat{\lambda} \) is
\[\sqrt{\frac{1}{246} + \frac{1}{74} + \frac{1}{104} + \frac{1}{276}} = 0.1755. \]
Thus, the 90% CI for \(\lambda \) is
\[2.177 \pm 1.645(0.1755) = \]
\[2.177 \pm 0.289 = \]
\[[1.888, 2.466]. \]
Exponiate each endpoint, and the CI for \(\theta \) is \([6.606, 11.775]\), which is just barely correct because it contains 6.682.

5. (a) We go to the website and enter 0.5 in the first box; 87 in the second box; 25 in the third box; and click on ‘Calculate.’ The P-values are 0.99998 for \(> \); 0.000045 for \(< \); and 0.000090 for \(\neq \).

(b) We need \((b - c) = 85 - 57 = 28 \) and \((b + c) = 85 + 57 = 142 \). The 98% CI is
\[\left(\frac{28}{450} \right) \pm 2.326 \sqrt{\frac{450(142) - (28)^2}{449(450)^2}} = \]
\[0.0622 \pm 2.326(0.0263) = \]
\[0.0622 \pm 0.0613 = \]
\[[0.0009, 0.1235]. \]

6. (a) We go to the website and enter 0.5 in the first box; 142 in the second box; 85 in the third box; and click on ‘Calculate.’ The P-values are 0.0116 for \(> \); 0.9927 for \(< \); and 0.0232 for \(\neq \).
Solutions to Chapter 14 Homework;
SPRING 2012

1. For questions 1–3, the \(df \) is 8 because it is equal to the \(n - 2 = 10 - 2 = 8 \). For 98%, from the given table, \(t^* = 2.896 \). Thus, the CI is
\[
6.57 \pm 2.896(0.9256) = 6.57 \pm 2.68 = [3.89, 9.25].
\]

2. For 95%, from the given table, \(t^* = 2.306 \). Thus, the CI is
\[
208.17 \pm 2.306(6.49) = 208.17 \pm 14.97 = [193.20, 223.14].
\]

3. For 90%, from the given table, \(t^* = 1.860 \). Thus, the PI is
\[
181.91 \pm 1.860\sqrt{(12.36)^2 + (4.18)^2} = 181.91 \pm 24.27 = [157.64, 206.18].
\]

4. (a) We substitute \(x = 72 \) into the regression line:
\[
\hat{y} = -304 + 6.57(72) = -304 + 473 = 169.
\]
(b) From the computer output we see that \(\hat{y} = 188.47 \). Thus, \(e = y - \hat{y} = 184 - 188.47 = -4.47 \).
(c) For this player \(y = 130 \) and
\[
\hat{y} = y - e = 130 + 5.94 = 135.94.
\]
Thus, for this player,
\[
135.94 = -304 + 6.57x.
\]
Solving for \(x \) we get
\[
x = (135.94 + 304)/6.57 = 67 \text{ inches}.
\]

5. The correlation coefficient will be a positive number because the slope of the regression line is positive.
\[
r = \sqrt{R^2} = \sqrt{.863} = 0.929.
\]

6. We have two points on the regression line: (78, 208.17) and (80, 221.30). The slope is
\[
b_1 = (221.30 - 208.17)/(80 - 78) = 13.13/2 = 6.57.
\]
To find the intercept,
\[
221.30 = b_0 + 80(6.57), \text{ or } b_0 = 221.30 - 525.60 = -304.30.
\]
Thus, the equation of the regression line is
\[
\hat{y} = -304.30 + 6.57x.
\]

7. The \(e \)’s sum to zero; hence,
\[
e_0 + e_1 = 0.
\]
The \(xe \)’s sum to zero; hence,
\[
e_1 = 3.
\]
Thus, \(e_0 = -3 \).

8. For the second case,
\[
20 = 310 - \hat{y} \text{ or } \hat{y} = 290.
\]
Thus, we have two points on the regression line: (50, 350) and (70, 290). As in problem 6, we find that the slope is
\[
b_1 = (290 - 350)/(70 - 50) = -60/20 = -3.
\]
To find the intercept,
\[
350 = b_0 + 50(-3), \text{ or } b_0 = 350 + 150 = 500.
\]
Thus, the equation of the regression line is
\[
\hat{y} = 500 - 3x.
\]
Chapter 14 Solutions to Homework Cont.

9. Deleting B (A) makes the relationship stronger (weaker); deleting both gives a relationship of intermediate strength. Thus,

- Data set 2 has $r = -0.700$.
- Data set 3 has $r = -0.913$.
- Data set 4 has $r = -0.887$.