1.2 The Classical Scientific Method and Statistical Inference

“The whole of science is nothing more than a refinement of everyday thinking.”

- Albert Einstein

Population of units

Random Variable X

Hypothesis (about X)

EXPERIMENT

“What actually happens this time, regardless of hypothesis.”

THEORY

“What ideally must follow, if hypothesis is true.”

Random Sample (empirical data)

$n = \# \text{ observations}$

- x_1
- x_2 \ldots x_n
- x_3

Mathematical Theorem (formal proof)

Proof: If Hypothesis (about X), then Consequence (about X).

QED

Analysis: Observed vs. Expected, under Hypothesis

“Is the difference statistically significant? Or just due to random, chance variation alone?”