11.9 Appendix: An Example of R Output for ANOVA
by EV Nordheim, MK Clayton & BS Yandell, December 9, 2003

Here we briefly indicate how R can be used to perform the ANOVA analysis for several examples in this chapter.

11.9.1 One-way ANOVA

We begin with the `oneway.test` command. To use this command it is necessary to have the data entered in two columns, one column for the treatment number and another for the data. We have already prepared file `drug.dat` in this fashion (available in the course data area).

```r
> drug = read.table("http://www.stat.wisc.edu/~st571-1/data/drug.dat")
> group = factor(drug$V1)
> y = drug$V2
```

Column V1 contains the treatment group number and column V2 contains the drug response. The `factor` command explicitly states that `group` is a categorical factor with discrete levels, not a number.

We can use the `oneway.aov.test` command to generate the desired output. This command is slightly different from the earlier test commands, as it requires a “formula”, in this case `y ~ group`. The tilde (`~`) separates the response (`y`) from the treatment identifier (`group`).

```r
> oneway.test(y ~ group, var.equal = TRUE)
```

```
One-way analysis of means

data:  y and group
F = 7.3837, num df = 4, denom df = 33, p-value = 0.000231 ***
```

This output is rather condensed, showing only what you “need to know” for the test. You can get a more standard looking ANOVA table, but without the TOTAL line by the following:

```r
> drug.lm = lm(y ~ group)
> anova(drug.lm)
```

```
Analysis of Variance Table

Response: y
            Df Sum Sq Mean Sq  F value    Pr(>F)
group        4 5.7028  1.4257  7.3837 0.000231 ***
Residuals   33 6.3719  0.1931
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
```

1
This latter, more complicated method uses the linear model (\texttt{lm}) command. First, we explicitly need the treatment \texttt{group} to be categorical, a \texttt{factor} in R language (we created it this way above). Second, we use the formula in the \texttt{lm} command to calculate a linear model object. Finally, we print the ANOVA table using the \texttt{anova} command. This method has its advantages as it opens up many new avenues for data analysis.

11.9.2 Graphical Summaries for ANOVA

We can use R to produce stem and leaf displays or box plots and to plot the standard deviations versus the means to check assumptions. We can also use the \texttt{lm} model object created above to check the residuals.

Here are some shorthand ways to get stem and leaf displays and boxplots:

\begin{verbatim}
> tmp = tapply(y, group, stem)

 The decimal point is at the |

 6 | 0
 6 | 5689
 7 | 3

 The decimal point is at the |

 5 | 79
 6 | 2234
 6 | 7
 7 | 0

 The decimal point is at the |

 4 | 9
 5 | 34
 5 | 5578
 6 | 03

 The decimal point is at the |

 5 | 699
 6 | 13
 6 | 69
\end{verbatim}
The decimal point is at the |

5 | 034
5 | 789
6 | 2
6 | 5

> boxplot(split(y, group))

![Boxplot](image)

It can be revealing to plot the means against the SDs to see if there is any pattern of variability. This can suggest an appropriate transformation.

> plot(tapply(y, group, mean), tapply(y, group, sd), xlab = "means", + ylab = "SDs", pch = levels(group))
In addition, we can use the \texttt{lm} fit to the one-way ANOVA to check for patterns in the residuals. There are actually four possible plots, but we show only the first one here.

\begin{verbatim}
> plot(drug.lm, which = 1)
\end{verbatim}
11.9.3 Nonparametric one-way ANOVA

The nonparametric one-way ANOVA can be performed using the `kruskal.test` command. We illustrate the latter with the fungus data from Section 11.7.

```r
> fungus = c(1.75, 1.25, 1, 2.75, 1.25, 2.5, 1.5, 3.75, 2, 1.75,
+            2.5, 3, 2.75, 4.25, 3, 3.5, 2.75, 2.25, 4)
> trt = c(rep(1, 5), rep(2, 8), rep(3, 6))
> kruskal.test(fungus, trt)

Kruskal-Wallis rank sum test

data: fungus and trt
Kruskal-Wallis chi-squared = 8.479, df = 2, p-value = 0.01441

We can also use formula in this command. For instance, the nonparametric ANOVA for the
drug problem is found by `kruskal.test(V2 ~ V1,drug)`, yielding a p-value of 0.0015.

11.9.4 Levene’s test of unequal variance for groups

We can compute Levene’s test for multiple groups using the following home-made command.
It uses some subtle R commands and is probably only for the adventurous reader. This is a
more general version of the two-sample Levene’s test shown in Appendix 10.

```r
> levene.test = function(data, v1 = "V1", v2 = "V2") {
+ levene.trans = function(data) {
+ ## find median for group of data
+ ## subtract median; take absolute value
+ a = sort(abs(data - median(data)))
+ ## if odd sample size, remove exactly one zero
+ if (length(a)%%2)
+ a[a != 0 | duplicated(a)]
+ else a
+ }
+ ## set up data frame with transformed data for anova
+ V2 = lapply(split(drug[[v2]], drug[[v1]]), levene.trans)
+ V1 = rep(seq(length(V2)), lapply(V2, length))
+ levdata = data.frame(V1 = factor(V1), V2 = unsplit(V2, V1))
+ ## perform one-way anova on transformed data
+ cat("Overall ANOVA for Levene’s Test\n")
+ print(anova(lm(V2 ~ V1, levdata)))
+ ## perform pairwise T-tests on transformed data
+ cat("\nPairwise Levene’s Tests\n")
+ pairwise.t.test(levdata$V2, levdata$V1, p.adjust = "none")
+ }
```
We illustrate this ANOVA version of the Levene’s test on the drug data:

```r
> levene.test(drug)
```

Overall ANOVA for Levene’s Test

Analysis of Variance Table

Response: V2

<table>
<thead>
<tr>
<th></th>
<th>Df</th>
<th>Sum Sq</th>
<th>Mean Sq</th>
<th>F value</th>
<th>Pr(&gt;F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1</td>
<td>4</td>
<td>0.0468</td>
<td>0.0117</td>
<td>0.1632</td>
<td>0.9554</td>
</tr>
<tr>
<td>Residuals</td>
<td>31</td>
<td>2.2220</td>
<td>0.0717</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pairwise Levene’s Tests

Pairwise comparisons using t tests with pooled SD

data: levdata$V2 and levdata$V1

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.91</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>0.89</td>
<td>0.78</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>0.59</td>
<td>0.49</td>
<td>0.67</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>0.69</td>
<td>0.58</td>
<td>0.78</td>
<td>0.86</td>
</tr>
</tbody>
</table>

P value adjustment method: none