1. Let B denote the P-value for $>;$ let C denote the P-value for $<$; and let D denote the P-value for \neq.

The first thing to note is that

$$x = \hat{p}_1 - \hat{p}_2 = 0.35 - 0.30 = 0.05,$$

is a positive number. This implies that

$$B \leq 0.5000 < C,$$

and that

$$D = 2B.$$

Also, recall that $B + C$ must be greater than 1. We now argue by contradiction.

- I start by determining which P-value is 0.8326. This cannot be B because it exceeds 0.5000.
 If $D = 0.8326$, then
 $$B = D/2 = 0.4163.$$
 By the process of elimination,
 $$C = 0.2454.$$
 Thus, $B + C < 1$, which is impossible.
 Thus, $C = 0.8326$.

- If $D = 0.2454$, then
 $$B = D/2 = 0.1227.$$
 From above,
 $$C = 0.8326.$$
 Thus, $B + C < 1$, which is impossible.
 Thus, $B = 0.2454$ and
 $$D = 2B = 0.4908.$$

2. The first thing to note is that

$$x = \hat{p}_1 - \hat{p}_2 = 0.52 - 0.60 = -0.08,$$

is a negative number. Define the following numbers:

$$B = P(X \leq -0.08); C = P(X \geq -0.08);$$

and $D = P(X \geq +0.08)$.

(It might help to draw a picture on the number line.) Note that because we cannot assume symmetry, B and D need not be equal. We do know, however, that $B + C > 1$ and $C > D$. With this notation, the P-values are given in the table below.

<table>
<thead>
<tr>
<th>Alternative</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$>$</td>
<td>C</td>
</tr>
<tr>
<td>$<$</td>
<td>B</td>
</tr>
<tr>
<td>\neq</td>
<td>$B + D$</td>
</tr>
</tbody>
</table>

Let’s consider the P-value 0.2931.

- Suppose that $C = 0.2931$. Then
 $$B + C > 1 \text{ implies } B > 0.7069$$
 and $B + D$ must equal 0.5242, which is impossible because it is smaller than B.

- Suppose that $B + D = 0.2931$. Then
 $$B \leq 0.2931$$
 making $C = 0.5242$

and $B + C < 1$.

Thus, $B = 0.2931$. C cannot equal 0.5242 because this would make $B + C < 1$. Thus, $B + D = 0.5242$ and C is unknown.
3. (a) The completed table is below, with the fractions not reduced.

<table>
<thead>
<tr>
<th>X_1</th>
<th>1</th>
<th>3</th>
<th>5.5</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>3/30</td>
<td>2/30</td>
<td>5/30</td>
</tr>
<tr>
<td>3</td>
<td>3/30</td>
<td>6/30</td>
<td>6/30</td>
<td>15/30</td>
</tr>
<tr>
<td>5.5</td>
<td>2/30</td>
<td>6/30</td>
<td>2/30</td>
<td>10/30</td>
</tr>
<tr>
<td>Total</td>
<td>5/30</td>
<td>15/30</td>
<td>10/30</td>
<td>1</td>
</tr>
</tbody>
</table>

For example, the probability of the cell (3,3) is $3/6$ (the probability the first card will be a '3') multiplied by $2/5$ (the probability the second card will be a '3' after the first card has been a '3').

(b) First, we note that for the sum to equal 8.5, either cell (3, 5.5) or (5.5, 3) must occur. Reading from the table above, this probability is $6/30 + 6/30 = 12/30$.

(c) First, we note that for the cards to be equal, either cell (1, 1), (3, 3) or (5.5, 5.5) must occur. Reading from the table above, this probability is $0 + 6/30 + 2/30 = 8/30$.

4. (a) Both critical regions have the ≥ sign; thus, the alternative for both tests is >.

(b) This is simply

$$P(U \geq 13) = 3/36 + 5/36 = 8/36.$$

(c) This is simply

$$P(R_1 \geq 13) = 4/36 + 5/36 = 9/36.$$

(d) Either both tests reject or both tests fail to reject. Thus, the probability is $24/36 + 5/36 = 29/36$.

5. (a) The cell count described is ‘b;’ thus, the count is 100.

(b) The cell count described is ‘d;’ thus, the count is 700.

(c) This one is a bit tricky. Because I am interested in only one power, and not a comparison of powers, I use the nearly certain interval from Chapter 4. $r_R = 900/2500 = 0.360$ and the nearly certain interval is $0.360 \pm 3 \sqrt{0.36(0.64)/2500} = 0.360 \pm 0.029$.

(d) The nearly certain interval is $200 - 100/2500 \pm (3/2500)\sqrt{100 + 200} = 0.040 \pm 0.021$.

6. (a) You are given the sequence 111100. The other four sequences are:

111101, 011110, 101111 and 001111.

(b) There are five sequences that yield ($V = 4$). Thus, $P(V = 4)$ is the sum of the probabilities of these five sequences:

$$3p^4q^2 + 2p^5q.$$

7. (a) By counting,

$$x = 27, r = 25, v = 5 \text{ and } w = 3.$$

(b) First,

$$c = 2(27)(45 - 27) = 972.$$

Thus,

$$\mu = 1 + (972/45) = 22.6 \text{ and }$$

$$\sigma = \sqrt{972(972 - 45)/45(45)(44)} = 3.18.$$
For the runs test and the alternative $>$, the P-value is $P(R \geq r) = P(R \geq 25)$. We are going to use a Normal curve to approximate this probability. We use the Normal curve that matches the distribution of R on mean and variance, both of which we found in part (b). Thus, we enter $A = 22.6$ and $B = 3.18$.

We want the area to the right, so we enter a number for C and, because we want the continuity correction, we replace 25 by 24.5.

Similar to our answer for (c), we enter the same values for A and B and enter 25.5 for D.

Because the mean of the Normal curve, 22.6, is smaller than both 24.5 and 25.5, it follows that $P_1 < 0.5000 < P_2$.

The Normal curve is symmetric; hence, $P_3 = 2P_1$.

Let B denote the P-value for $>$; let C denote the P-value for $<$; and let D denote the P-value for \neq. We know that $B + C > 1$ and that, by symmetry, D is twice the smaller of B and C.

First,
\[x = 0.30 - 0.40 = -0.10 \]

is a negative number. Thus,
\[C < 0.5000 < B \text{ and } D = 2C. \]

Let’s start with 0.1055. This cannot be B because it is smaller than 0.5000. If it were D, then $C = D/2 = 0.0528$ and $B + C$ would be smaller than 1 for either of the possible values for B. Thus, $C = 0.1055$ and $D = 2C = 0.2110$.

If $B = 0.8822$, then $B + C < 1$; thus, $B = 0.9411$.

(a) We need to rewrite the event $(X_1 = X_2)$ in terms of cells in the table. It is $(X_1 = X_2 = 2)$ or $(X_1 = X_2 = 3)$.

Thus, its probability is
\[0.06 + 0.16 = 0.22. \]

(b) We need to write the event $(X_1 \times X_2 > 5)$ in terms of cells in the table. It consists of the cells (2,3), (3,2), (3,3), (4,2) and (4,3). Thus, its probability is
\[0.11 + 0.090.16 + 0.15 + 0.23 = 0.74. \]

(a) This is a power analysis which implies that the correct decision is to reject the null. Thus, the cell of interest is R_1 rejects and U fails to reject; its count is 50.

(b) The cell of interest is R_1 rejects and U rejects; its count is 650.

This one is a bit tricky. Because I am interested in only one power, and not a comparison of powers, I use the nearly certain interval from Chapter 4. $r_U = 900/2000 = 0.450$ and the nearly certain interval is
\[0.450 \pm 3 \sqrt{0.450(0.55)}/2000 =
\]
\[0.450 \pm 0.033. \]

The nearly certain interval is
\[(250 - 50)/2000 \pm 3/2000 \sqrt{50 + 250} =
\]
\[0.100 \pm 0.026. \]

I will refer to each interval by its lower bound, suppressing the decimal point for (my) ease; i.e., they are 519, 528, 536 and 544.

First, we calculate the four centers. We get 0.631 twice and two other numbers. The two approximate intervals must have the same center (\bar{p}); thus, 528 and 544 are the approximate intervals.
Interval 544 is narrower than interval 528; thus, the former is 90% and the latter is 95%.

Finally, 519 and 536 are the exact intervals. The former is wider; thus, it is 95% and the latter is 90%.

12. (a) Reading from the table, the CI is
\[[0.108, 0.566] \]

(b) The CI contains \(p = 0.600 \) if, and only if, \(x \) equals 4, 5, 6, 7 or 8.

(c) The lower bound of the CI exceeds \(p = 0.300 \) if, and only if, \(x \) equals 6, 7, 8, 9 or 10.

(d) The upper bound of the CI is smaller than \(p = 0.700 \) if, and only if, \(x \) equals 0, 1, 2, 3 or 4.

13. It is important to go back in time before data are collected to set up the problem. We plan to observe \(X \) which has a Poisson distribution with parameter \(\theta \). For later in the problem, we note that
\[\theta = 15\lambda, \]
where \(\lambda \) is the rate per hour.

The data yield \(X = 840 \), making the 95% CI for \(\theta \):
\[840 \pm 1.96\sqrt{840} = 840 \pm 56.81. \]

Next, we divide thru by 15 to convert to \(\lambda \), obtaining:
\[56.00 \pm 3.79. \]

14. First, we calculate \(r' = 12/15 = 0.8 \). The 90% PI is:
\[0.8(840) \pm 1.645\sqrt{0.8(840)(1.8)} = 672 \pm 57.21. \]

15. As with problem 3, it helps to go back in time to before the data are collected. Vince plans to observe \(X \) which has a Poisson distribution with parameter \(\theta \), where
\[\theta = 3\lambda, \]
where \(\lambda \) is the rate per minute.

Vince observes \(X = 4 \) and the website gives Vince an upper bound, call it \(b \), for \(\theta \):
\[\theta \leq b \text{ or } \lambda \leq b/3. \]

We are given that
\[b/3 = 2.5574; \text{ thus, } b = 7.6722. \]

The inequality
\[\theta \leq 7.6722 \text{ becomes } 700p \leq 7.6722, \]
which gives
\[p \leq 0.01096. \]

16. (a) In order to find the critical region, we assume that the null hypothesis is correct; hence, we will obtain our probabilities from the column for \(p = 0.25 \).

The alternative is \(> \); thus, the critical region will have the form \((X \geq c) \). We must determine the value of \(c \).

Per the instructions in the problem, we need to find \(c \) so that
\[P(X \geq c) < 0.10, \]
but as close to 0.10 as possible. Using trial-and-error, I begin with \(c = 6 \). From the table,
\[P(X \geq 6) = 0.0917 + 0.0393 + \ldots. \]

My guess can’t be correct because the sum of the first two terms exceeds 0.10. Next, I try \(c = 7 \) and get
\[P(X \geq 7) = 0.0393 + 0.0131 + 0.0034 + 0.0007 + 0.0001 = 0.0566. \]

Thus, the critical region is \((X \geq 7) \).

(b) From (a), \(\alpha = 0.0566 \).

(c) The null hypothesis is that \(p = 0.20 \); thus, we use this column to obtain probabilities. The value of \(\alpha \) is
\[P(X \geq 6) = 0.0430 + 0.0138 + 0.0035 + 0.0007 + 0.0001 = 0.0611. \]
(d) We want the power for \(p = 0.30 \); thus, we use this column to obtain probabilities. The value of the power is

\[
P(X \geq 6) = 0.1472 + 0.0811 + 0.0348 + 0.0116 + 0.0030 + 0.0006 + 0.0001 = 0.2784.
\]

17. The approximate 95% confidence interval for \(\theta \) is

\[
x \pm 1.96 \sqrt{x} = 960 \pm 1.96 \sqrt{960} = 960 \pm 60.72.
\]

We can infer that

\[
\theta = 12 \lambda.
\]

Thus,

\[
960/12 = 80 \pm 5.06
\]

is the approximate 95% confidence interval for \(\lambda \).

18. First, \(r' = 9/12 = 0.75 \). The 90% prediction interval is

\[
r'x \pm 1.645 \sqrt{r'x(1 + r')} = 0.75(960) \pm 1.645 \sqrt{0.75(960)(1.75)} = 720 \pm 58.4.
\]

19. Let \(\lambda \) denote the rate per minute. The website gives Vince the upper bound for \(\theta = 10 \lambda \).

You are told that the upper bound for \(\lambda \) is 0.7906; thus, the upper bound for \(\theta \) is 10(0.7906) = 7.906. Written as an inequality, we have

\[
\theta \leq 7.906.
\]

We want the upper bound for \(p \). We obtain this by using the Poisson to approximate the binomial. We replace \(\theta \) by \(np \) and get the following approximate upper bound

\[
np \leq 7.906.
\]

Noting that \(n = 800 \), we solve for \(p \) and get

\[
p \leq 0.009882.
\]

Note this approximation works only because Sean and Vince both have five successes and they both want the upper 80% confidence bound.

20. (a) The entire process must be one big set of Bernoulli trials. In particular, the \(p \) (not \(\hat{p} \)) must be the same for the past data and the future data. Also, the future data must be independent of the past data.

(b) First,

\[
r = 300/200 = 1.5 \text{ and } \hat{q} = 128/200 = 0.64.
\]

The 80% prediction interval is

\[
r \pm 1.282 \sqrt{r(1 + r) \hat{q}} = 1.5(72) \pm 1.282 \sqrt{1.5(72)(2.5)(0.64)} = 108 \pm 16.8.
\]