Notes for the Second Midterm Exam; Statistics Statistics 371, Lecture 3; Fall 2014

Miscellaneous. You will not be asked any questions about output from vassarstats.

Chapters 8 and 9: Dichotomous Responses; Critical Regions and Statistical Power. In Chapter 8 we consider the situation in which the response is a dichotomy. In this situation, we present our data in a table of counts:

| Treatment | Response | Proportions | | | |
|-----------|----------|-------------|----------|----------|
| | S | F | Total | |
| 1 | a | b | n₁ | ̂p₁ = a/n₁ ̂q₁ = b/n₁ |
| 2 | c | d | n₂ | ̂p₂ = c/n₂ ̂q₂ = d/n₂ |
| Total | m₁ | m₂ | n | |

The observed value of the test statistic is \(x = ̂p₁ - ̂p₂ \). As shown in the Course Notes, this test statistic, \(X \), is equivalent to our earlier test statistic \(U \). Thus, if \(n₁ = n₂ \), then the sampling distribution of \(X \) is symmetric around 0.

Exact P-values for \(X \) can be obtained from the internet. You need to remember the following properties, stated below for \(X \), but also true for \(U \):

- For any number \(x \), \(P(X \geq x) + P(X \leq x) = 1 + P(X = x) \).
- If the sampling distribution is symmetric around 0, then for any number \(x \),
 \[P(X \geq x) = P(X \leq -x). \]

Given the exact sampling distribution for \(U \) and a target value of \(\alpha \), you need to be able to find the critical region for the alternative \(> \) and for the alternative \(< \). You will not be required to find the critical region for the alternative \(\neq \). The method is presented below for the test statistic \(U \). This method can be applied, in the obvious way, for the test statistic \(R_1 \).

- If the alternative is \(> \) and \(\alpha = 0.05 \), then you need to be able to find the number \(c \) that satisfies:
 \[P(U \geq c) = 0.05. \]
- If the alternative is \(< \) and \(\alpha = 0.05 \), then you need to be able to find the number \(c \) that satisfies:
 \[P(U \leq c) = 0.05. \]
- In each of the cases above, you will need to use trial-and-error to obtain the value of \(c \). Also, you need to be able to do this for any value of \(\alpha \), not just 0.05.

More often, I do not give you the exact sampling distribution of \(U \) or \(R_1 \). I will give my findings based on a computer simulation experiment. For example, I might give you the following table obtained under the assumption that the Skeptic is correct.
<table>
<thead>
<tr>
<th>(U)</th>
<th>(R_1)</th>
<th>(R_1)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fail to reject (H_0)</td>
<td>(a = 9,374)</td>
<td>(b = 126)</td>
<td>(a + b = 9,500)</td>
</tr>
<tr>
<td>Reject (H_0)</td>
<td>(c = 128)</td>
<td>(d = 372)</td>
<td>(c + d = 500)</td>
</tr>
<tr>
<td>Total</td>
<td>(a + c = 9,502)</td>
<td>(b + d = 498)</td>
<td>(m = 10,000)</td>
</tr>
</tbody>
</table>

Make sure you know what all of these numbers/cells represent. For example, for 9,374 assignments both tests correctly fail to reject; for 498 assignments test \(R_1 \) incorrectly rejects; and for 128 assignments \(R_1 \) correctly fails to reject while \(U \) incorrectly rejects.

If instead of the Skeptic being correct, a particular version of the alternative is correct, we get a table with the same labels, but now the topic is power.

<table>
<thead>
<tr>
<th>(U)</th>
<th>(R_1)</th>
<th>(R_1)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fail to reject (H_0)</td>
<td>(a = 7,500)</td>
<td>(b = 100)</td>
<td>(a + b = 7,600)</td>
</tr>
<tr>
<td>Reject (H_0)</td>
<td>(c = 300)</td>
<td>(d = 2,100)</td>
<td>(c + d = 2,400)</td>
</tr>
<tr>
<td>Total</td>
<td>(a + c = 7,800)</td>
<td>(b + d = 2,200)</td>
<td>(m = 10,000)</td>
</tr>
</tbody>
</table>

As with the earlier table, you need to know what each number/cell represents. In this table, the approximate powers are 0.2400 for \(U \) and 0.2200 for \(R_1 \). If we denote the exact powers by \(r_U \) and \(r_R \), respectively, then the nearly certain interval for \(r_U - r_R \) is:

\[
\frac{(c - b)}{m} \pm \frac{3}{m} \sqrt{b + c}.
\]

The nearly certain interval for \(r_R - r_U \) is

\[
\frac{(b - c)}{m} \pm \frac{3}{m} \sqrt{b + c}.
\]

Note that both of these intervals are approximations to and simplifications of the intervals given in the Course Notes. In my opinion the approximation is good provided \(m \geq 1,000 \).

Chapter 10: Populations: Getting Started. There are two types of problems in Chapter 10.

First, I will describe a Chance Mechanism and you determine probabilities using some combination of multiplying and adding. Below are two examples.

Chance Mechanism: I have a box with four cards, numbered 1, 2, 3 and 4. I plan to select two cards at random with replacement. Let \(T \) be the total of the two cards and define \(X_1 \) and \(X_2 \) as in the Course Notes. I want to determine \(P(T = 7) \). This is equal to

\[
P(X_1 = 3 \text{ and } X_2 = 4) + P(X_1 = 4 \text{ and } X_2 = 3) = (1/4)(1/4) + (1/4)(1/4) = 2/16 = 1/8.
\]

Chance Mechanism: Same as above, but I will select two card at random without replacement. Again, I want \(P(T = 7) \) which can be written the same as above. When we calculate, however, we now get:

\[
(1/4)(1/3) + (1/4)(1/3) = 2/12 = 1/6.
\]

Second, you are given a table of joint probabilities for two random variables \(X_1 \) and \(X_2 \), you need to be able to determine the probability of a variety of events. Identify the cells in the table that correspond to the event of interest and sum their probabilities; using the multiplication rule typically does not work.
Chapter 11: Bernoulli Trials (BT). If we have BT, then, in addition to the multiplication rule being true, we know that if X is the total number of successes in n BT, then the sampling (or probability) distribution of X is binomial, written $\text{Bin}(n, p)$, where p is the probability of success on a trial. For $(n \leq 6)$ make sure you can evaluate the following by hand.

$$P(X = x) = \frac{n!}{x!(n-x)!} p^x q^{n-x},$$

for $x = 0, 1, 2, \ldots, n$.

If X has a binomial distribution, its mean is np and its variance is npq.

You need to know about the random variables R (the number of runs), V (the length of the longest run of successes) and W (the length of the longest run of failures). For example, suppose that 15 dichotomous trials yield:

11 0 1 0 1 1 1 0 0 0 0 1 0 1.

Then the observed values of these random variables are $r = 9$, $v = 3$ and $w = 4$.

Inference for R is performed conditional on the value of x. In particular, define $c = 2x(n-x)$. With this definition, the mean and standard deviation of the sampling distribution of R is:

$$\mu = 1 + (c/n) \quad \text{and} \quad \sigma = \sqrt{\frac{c(c - n)}{n^2(n - 1)}}.$$

Chapter 12: Inference for a Binomial p. The approximate 95% confidence interval (CI) estimate of p is:

$$\hat{p} \pm 1.96\sqrt{(\hat{p}\hat{q})/n}.$$

Note that this approximate CI is centered at \hat{p}.

You need to know the following general facts about CIs. A CI can be written as $[l, u]$, where l [u] is the lower [upper] bound of the interval, and $l \leq u$. A CI is too small [large], if, and only if, u [l] is smaller [larger] than the parameter being estimated. Every CI is either too small, too large or correct; only Nature knows which it is.

If $\hat{p} = 0.50$, then the exact CI is centered at \hat{p}; for other values of \hat{p} it isn’t.

With the help of computer output I can provide for you, the exact value of α and the exact power can be obtained for the tests of Chapter 12; make sure you understand how to do this.

Chapter 13: The Poisson Distribution. If X has a Poisson distribution with parameter θ, then both its mean and variance equal θ. If Y has a binomial distribution with parameters n and p with n large, p close to zero and $np < 25$;

then probabilities for Y can be approximated well by using the Poisson distribution with parameter $\theta = np$. In particular, an exact confidence interval for θ is an approximate confidence interval for np, which, of course, will yield an approximate confidence interval for p.

3
Suppose that you have a Poisson Process (PP) with rate λ per hour. Let X denote the number of successes obtained by observing this process for t hours. Then X has a Poisson distribution with parameter $\theta = t\lambda$. **Be careful:** I sometimes like to *mix units*; for example, if the rate is *per hour* I might tell you that the PP is observed for m minutes. The following formula gives the approximate CI for θ

$$x \pm z^* \sqrt{x}.$$

Once you have this CI for θ, it can be converted to a CI for λ

Suppose that X_1 has a Poisson distribution with parameter θ_1 and X_2 has a Poisson distribution with parameter θ_2. If X_1 and X_2 are statistically independent, then $Y = X_1 + X_2$, has a Poisson distribution with parameter $\theta_1 + \theta_2$.

Chapter 14: Prediction. You need to know both prediction interval (PI) formulas for the binomial and the PI for a PP. You do not need to know any of the chapter’s rules for means and variances.

We plan to observe m future Bernoulli trials and want to predict the total number of successes, Y, that will be obtained.

- If p is known, then the approximate 95% prediction interval for Y is:

$$mp \pm 1.96 \sqrt{mpq}.$$

- If p is unknown, we need previous data from the process which consists of x successes in n trials, yielding $\hat{p} = x/n$ and $\hat{q} = 1 - \hat{p}$. Define $r = m/n$, the ratio of the future to the past. The approximate 95% prediction interval for Y is:

$$rx \pm 1.96 \sqrt{r(1 + r)x\hat{q}}.$$

We have past data from a PP consisting of x successes in time t_1. We plan to observe the same PP in the future for time t_2. Note that t_1 and t_2 must be in the same units; e.g., both hours or both minutes. The PI for the number of successes in the future observation of the PP is:

$$r'x \pm z^* \sqrt{r'x(1 + r')}, \text{ where } r' = t_2/t_1.$$