Combining P-values

This posting is inspired by a question from a student. The question raises a common issue in what is called meta-analysis. Quoting from the Wikipedia entry,

Meta-analysis combines the results of several studies that address a set of related research hypotheses.

There are many ideas and approaches to meta-analysis; in this posting I will address only one idea: How to combine P-values. And there are many ways to combine P-values; I will focus on just one method.

Here is the idea. Suppose that at $k=10$ medical centers studies are done to compare a new treatment ' B ' to a placebo for patients with some form of cancer. In each study the null hypothesis is that treatment B and the placebo are equally effective and the alternative is that treatment B is superior.

Note the following. The discussion below is equally valid regardless of the type of response: dichotomy, multi-category or numerical. Also, it does not matter whether the alternative is one- or two-sided.

Here is what does matter: The (null) sampling distribution of the test statistic is given by a pdf; it does not matter which pdf. The pdf could be the standard normal curve, a t-curve, a chi-squared curve or any of the many curves we have not studied.

To be specific, suppose that, after sorting, the $k=10 \mathrm{P}$-values are:

$$
\begin{array}{lllll}
0.0645 & 0.0910 & 0.1148 & 0.1315 & 0.1319 \\
0.1508 & 0.1537 & 0.1644 & 0.1766 & 0.1940
\end{array}
$$

Let's examine these P-values. First, none of them is small enough to achieve statistical significance because each one is larger than 0.05 . On the other hand, they are all pretty small, so we have the feeling that overall they support the alternative, that treatment B is superior to the placebo. But how do we measure this?

To date, we have focused on a single P -value as a measure of the strength of the evidence in support of the alternative. Now, with ten P-values, we need to think about the distribution of P -values. To this end, we have the following basic result.

On the assumptions that the null hypothesis is true and that the sampling distribution is given by a pdf, the distribution of \mathbf{P}-values is uniform on the interval $\mathbf{0}$ to 1 .

Recall that the uniform distribution is the pdf that is shaped like a rectangle. Thus, the pdf in question is the rectangle located on the interval $[0,1]$. If you remember that a fundamental feature of a pdf is that its total area is one, then we see that the height of this pdf equals one. In words, this uniform distribution describes the result of selecting a number (a measurement) at random from between 0 and 1 .

Looking back at our ten P-values, I am encouraged. Our values do not appear to be selected at random from the interval $[0,1]$; they are too concentrated below 0.20 .

The question becomes: How to we combine the information in these ten values to get one overall measure?

Here a math result comes to our aid. Suppose that X is a random variable with the uniform distribution on $[0,1]$. Then the distribution of $Y=-2 \ln (X)$ is chi-squared with two degrees of freedom.

Thus, if we have $k \mathrm{P}$-values from different studies (and hence are independent):

$$
X_{1}, X_{2}, \ldots X_{k}
$$

and we define

$$
Y_{i}=-2 \ln \left(X_{i}\right),
$$

then the random variables

$$
Y_{1}, Y_{2}, \ldots Y_{k}
$$

are i.i.d. each with the chi-squared distribution with two degrees of freedom.
The final math result we need is that if we sum these i.i.d. chi-squared variables,

$$
W=\sum Y_{i}
$$

then the distribution of W is chi-squared with $2 k$ degrees of freedom.
I will illustrate the utility of these ideas with my ten phony P-values above. For each of the ten P-values, the X_{i} 's, calculate twice the negative of its natural log. Doing this we get:

$$
\begin{array}{lllll}
5.482 & 4.794 & 4.329 & 4.057 & 4.051 \\
3.784 & 3.746 & 3.611 & 3.468 & 3.280
\end{array}
$$

If we sum these ten values we get $W=40.602$.
To obtain our 'overall P-value' we just calculate the area under the chi-squared curve to the right of W. For our case, I go to the online chi-squared curve calculator located at http://stattrek.com/online-calculator/chi-square.aspx
and enter 20 for degrees of freedom and put $W=40.602$ in the second (CV) box. The overall P -value appears in the third box; it is 0.004 .

Exercise: Find the overall P-value for the following six P-values: 0.0412, 0.0523, 0.0911, $0.1011,0.1267$ and 0.4500 .

Answer: $W=27.385$ and the overall P-value is 0.007 .
Exercise: Repeat the above exercise after deleting the largest P -value from the set of six.
Answer: $W=25.788$ and the overall P -value is 0.004 .
Note: I want to thank Vladimir Babak at the Veterinary Research Institute in the Czech Republic for finding an error in my original version of this document.

