Stat 849: ggplot2 graphics

Douglas Bates

University of Wisconsin - Madison
and R Development Core Team
<Douglas.Bates@R-project.org>

Sept 08, 2010
Outline

ggplot2

The pima data set from the faraway package

Univariate summary plots

Bivariate plots

Simple regression or ancova lines

Ancova
Outline

ggplot2

The pima data set from the faraway package

Univariate summary plots

Bivariate plots

Simple regression or ancova lines

Ancova
The `pima` data set from the `faraway` package

Univariate summary plots

Bivariate plots

Simple regression or ancova lines

Ancova
Outline

ggplot2

The *pima* data set from the *faraway* package

Univariate summary plots

Bivariate plots

Simple regression or ancova lines

Ancova
Outline

ggplot2

The pima data set from the faraway package

Univariate summary plots

Bivariate plots

Simple regression or ancova lines

Ancova
Outline

ggplot2

The pima data set from the faraway package

Univariate summary plots

Bivariate plots

Simple regression or ancova lines

Ancova
Outline

ggplot2

The `pima` data set from the `faraway` package

Univariate summary plots

Bivariate plots

Simple regression or ancova lines

Ancova
Another advanced graphics package for R is ggplot2 by Hadley Wickham (a recent Iowa State Stats Ph.D., now at Rice).

His book is listed as one of the references on the course web site.

The core chapter introducing the basic function called qplot can be obtained from the URL in the links section on the course web site.

I will use data from the faraway package to accompany Julian Faraway’s freely available book “Practical Regression and Anova using R” to illustrate the use of qplot.
ggplot2

The pima data set from the faraway package

Univariate summary plots

Bivariate plots

Simple regression or ancova lines

Ancova
Examining the pima data

```r
> library(faraway)
> str(pima)

'data.frame': 768 obs. of 9 variables:
  $ pregnant : int 6 1 8 1 0 5 3 10 2 8 ...  
  $ glucose : int 148 85 183 89 137 116 78 115 197 125 ...  
  $ diastolic: int 72 66 64 66 40 74 50 0 70 96 ...  
  $ triceps : int 35 29 0 23 35 0 32 0 45 0 ...  
  $ insulin : int 0 0 0 94 168 0 88 0 543 0 ...  
  $ bmi : num 33.6 26.6 23.3 28.1 43.1 25.6 31 35.3 30.5 0 ...  
  $ diabetes: num 0.627 0.351 0.672 0.167 2.288 ...  
  $ age : int 50 31 32 21 33 30 26 29 53 54 ...  
  $ test : int 1 0 1 0 1 0 1 0 1 1 ...  

> head(pima)

           pregnant glucose diastolic triceps insulin  bmi diabetes age test
1           6      148        72      35         0 33.6   0.627 50     1
2           1       85        66      29         0 26.6   0.351 31     0
3           8      183        64       0         0 23.3   0.672 32     1
4           1       89        66      23       94 28.1   0.167 21     0
5           0      137        40      35     168 43.1   2.288 33     1
6           5      116        74       0     0 25.6   0.201 30     0
```
Recoding the missing data

- As Faraway indicates, several of the values of variables that cannot reasonably be zero are recorded as zero.
- A bit of research shows that these are missing data values. Also the test variable is a factor, not numeric.

```r
> pima <- within(pima, {
+   diastolic[diastolic == 0] <- glucose[glucose == 0] <- triceps[triceps == 0] <- insulin[insulin == 0] <- bmi[bmi == 0] <- NA
+   test <- factor(test, labels = c("negative", "positive"))
+ })
> head(pima, 3)

   pregnant glucose diastolic triceps insulin bmi diabetes age test
1       6     148       72      35      NA  33.6   0.627    50  positive
2       1     85       66      29      NA  26.6   0.351    31   negative
3       8    183       64      NA      NA  23.3   0.672    32  positive
```
ggplot2

The pima data set from the faraway package

Univariate summary plots

Bivariate plots

Simple regression or ancova lines

Ancova
> qplot(dia
tolic, data = pima, geom = "histogram")
Histogram of diastolic bp by test

> qplot(diastolic, data = pima, geom = "histogram", fill = test)
Empirical density plot

> qplot(diastolic, data = pima, geom = "density")
Empirical density of diastolic by test

```r
> qplot(diastolic, data = pima, geom = "density", color = test)
```
Outline

ggplot2

The `pima` data set from the `faraway` package

Univariate summary plots

Bivariate plots

Simple regression or ancova lines

Ancova
Simple scatterplot, c.f. Fig. 1.2a, p. 13

> qplot(diastolic, diabetes, data = pima, xlab = ...)
Adding a scatterplot smoother

```r
> qplot(diastolic, diabetes, data = pima, geom = c("point", + "smooth"))
```
Multiple smoothers by group

```r
> qplot(diastolic, diabetes, data = pima, geom = c("point", + "smooth"), color = test)
```
Comparative boxplots - apparently only vertical

> qplot(test, diabetes, data = pima, geom = c("boxplot"))

Diabetes test result
Diabetes pedigree function

0.5
1.0
1.5
2.0
●
●
●
●
●
●
●
●
●●
●●
●
●●
●
●●
●
●
●
negative positive
Outline

ggplot2

The pima data set from the faraway package

Univariate summary plots

Bivariate plots

Simple regression or ancova lines

Ancova
Adding a simple linear regression line - c.f. Fig. 1.3, p. 14

```r
(p <- qplot(midterm, final, data = stat500, geom = c("point", + "smooth"), method = "lm"))
```
Adding a reference line - c.f. Fig. 1.3, p. 14

> p + geom_abline(intercept = 0, slope = 1, color = "red")
Suppressing the confidence band

It happens that the defaults are intercept=0 and slope=1

```r
> (p <- qplot(midterm, final, data = stat500, geom = c("point", "+ "smooth"), method = "lm", se = FALSE) + geom_abline(color = "red")
```

```r
midterm
final
−2
−1
0
1
2
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
−2 −1 0 1 2
```
Outline

ggplot2

The pima data set from the faraway package

Univariate summary plots

Bivariate plots

Simple regression or ancova lines

Ancova
Plotting multiple groups and lines, c.f. Fig. 15.2, p. 163

```r
levels(cathedral$style) <- c("Gothic", "Romanesque")
qplot(x, y, data = cathedral, geom = c("point", "smooth"),
      method = "lm", color = style, xlab = ...)
```
Plotting multiple groups in separate panels

```r
> qplot(x, y, data = cathedral, geom = c("point", "smooth"),
+ method = "lm", facets = . ~ style, xlab = ...)
```

![Graph showing Nave Height vs. Total Length for Gothic and Romanesque styles.](image)