The Adaptive Lasso and Its Oracle Properties
Hui Zou (2006), JASA

Presented by Dongjun Chung

March 12, 2010
Introduction

Inconsistency of LASSO

Adaptive LASSO
 Definition
 Oracle Properties
 Computations
 Relationship: Nonnegative Garrote
 Extensions: GLM

Numerical Experiments and Discussion

Proofs
 Theorem 2: Oracle Properties of Adaptive LASSO
 Corollary 2: Consistency of Nonnegative Garrote
 Theorem 4: Oracle Properties of Adaptive LASSO for GLM
Setting

- \(y_i = x_i \beta^* + \varepsilon_i \), where \(\varepsilon_1, \cdots, \varepsilon_n \) are i.i.d. mean 0 and variance \(\sigma^2 \).
- \(A = \{ j : \beta_j^* \neq 0 \} \) and \(|A| = p_0 < p \).
- \(\frac{1}{n} X^T X \to C \), where \(C \) is a positive definite matrix.
- \(C = \begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix} \), where \(C_{11} \) is a \(p_0 \times p_0 \) matrix.
We call δ an *oracle* procedure if $\hat{\beta}(\delta)$ (asymptotically) has the following oracle properties:

1. Identifies the right subset model, $\{j : \hat{\beta}_j \neq 0\} = A$.
2. $\sqrt{n} \left(\hat{\beta}(\delta)_A - \beta^*_A \right) \rightarrow_d N(0, \Sigma^*)$, where Σ^* is the covariance matrix knowing the true subset model.
Definition of LASSO (Tibshirani, 1996)

\[\hat{\beta}^{(n)} = \arg \min_{\beta} \left\| y - \sum_{j=1}^{p} x_j \beta_j \right\|^2 + \lambda_n \sum_{j=1}^{p} |\beta_j|. \]

- \(\lambda_n \) varies with \(n \). \(A_n = \{ j : \hat{\beta}_j^{(n)} \neq 0 \} \).
- LASSO variable selection is consistent iff \(\lim_{n} P (A_n = A) = 1 \).
Proposition 1: Inconsistency of LASSO

If $\lambda_n / \sqrt{n} \rightarrow \lambda_0 \geq 0$, then $\limsup_n P (A_n = A) \leq c < 1$, where c is a constant depending on the true model.
Theorem 1: Necessary Condition for Consistency of LASSO

Suppose that \(\lim_n P (A_n = A) = 1 \). Then there exists some sign vector \(s = (s_1, \cdots, s_{p_0})^T \), \(s_j = 1 \) or \(-1\), such that

\[
|C_{21} C_{11}^{-1} s| \leq 1.
\]
Corollary 1: Interesting Case of Inconsistency of LASSO

Suppose that $p_0 = 2m + 1 \geq 3$ and $p = p_0 + 1$, so there is one irrelevant predictor. Let $C_{11} = (1 - \rho_1) I + \rho_1 J_1$, where J_1 is the matrix of 1's and $C_{12} = \rho_2 \mathbf{1}$ and $C_{22} = 1$. If $-\frac{1}{p_0 - 1} < \rho_1 < -\frac{1}{p_0}$ and $1 + (p_0 - 1) \rho_1 < |\rho_2| < \sqrt{(1 + (p_0 - 1) \rho_1) / p_0}$, then condition (1) cannot be satisfied. Thus LASSO variable selection is inconsistent.
Corollary 1: Interesting Case of Inconsistency of LASSO

Presented by Dongjun Chung

Definition of Adaptive LASSO

\[\hat{\beta}^*(n) = \arg \min_{\beta} \left\| y - \sum_{j=1}^{p} x_j \beta_j \right\|^2 + \lambda_n \sum_{j=1}^{p} \hat{w}_j |\beta_j| . \]

- weight vector \(\hat{w} = 1/|\hat{\beta}|^{\gamma} \) (data-dependent) and \(\gamma > 0 \).
- \(\hat{\beta} \) is a root-\(n \)-consistent estimator to \(\beta^* \), e.g. \(\hat{\beta} = \hat{\beta}(\text{ols}) \).
- \(A_n^* = \{ j : \hat{\beta}_j^*(n) \neq 0 \} \).
3.3 Oracle Inequality and Near-Minimax Optimality

As shown by Donoho and Johnstone (1994), the ℓ_1 shrinkage leads to the near–minimax-optimal procedure for estimating nonparametric regression functions. Because the adaptive lasso is a modified version of the lasso with subtle and important differences, it would be interesting to see whether the modification affects the minimax optimality of the lasso. In this section we derive a new oracle inequality to show that the adaptive lasso shrinkage is near-minimax optimal.

For the minimax arguments, we consider the same multiple estimation problem discussed by Donoho and Johnstone (1994). Suppose that we are given n independent observations $\{y_i\}$ generated from $y_i = \mu_i + z_i, i = 1, 2, \ldots, n$, where the z_i's are iid normal random variables with mean 0 and known variance σ^2. For simplicity, let us assume that $\sigma = 1$. The objective is to estimate the mean vector (μ_i) by some estimator $(\hat{\mu}_i)$, and the quality of the estimator is measured...
The data-dependent \hat{w} is the key for its oracle properties.

As n grows, the weights for zero-coefficient predictors get inflated, while the weights for nonzero-coefficient predictors converge to a finite constant.

In the view of Fan and Li, 2001 (presented by Yang Zhao), adaptive lasso satisfies three properties of good penalty function: unbiasedness, sparsity, and continuity.
Theorem 2
Suppose that $\lambda_n/\sqrt{n} \to 0$ and $\lambda_n n^{(\gamma^{-1})/2} \to \infty$. Then the adaptive LASSO must satisfy the following:

1. Consistency in variable selection: $\lim_n P (A^*_n = A) = 1$.
2. Asymptotic normality: $\sqrt{n} \left(\hat{\beta}^{(n)}_A - \beta^*_A \right) \to_d N \left(0, \sigma^2 C_{11}^{-1} \right)$.
Adaptive LASSO estimates can be solved by the LARS algorithm (Efron et al., 2004). The entire solution path can be computed at the same order of computation of a single OLS fit.

Tuning: If we use $\hat{\beta}(\text{ols})$, then use 2-dimensional CV to find an optimal pair of (γ, λ_n). Or use 3-dimensional CV to find an optimal triple $(\hat{\beta}, \gamma, \lambda)$.

$\hat{\beta}(\text{ridge})$ may be used from the best ridge regression fit when collinearity is a concern.
Definition of Nonnegative Garroote (Breiman, 1995)

\[\hat{\beta}_j \textit{(garrote)} = c_j \hat{\beta}_j \textit{(ols)} , \text{ where a set of nonnegative scaling factor } \{ c_j \} \text{ is to minimize } \]

\[\left\| y - \sum_{j=1}^{p} x_j \hat{\beta}_j \textit{(ols)} c_j \right\|^2 + \lambda_n \sum_{j=1}^{p} c_j , \]

subject to \(c_j \geq 0, \forall j. \)

- A sufficiently large \(\lambda_n \) shrinks some \(c_j \) to exact 0, i.e. \(\hat{\beta}_j \textit{(garroote)} = 0. \)
- Yuan and Lin (2007) also studied the consistency of the nonnegative garroote.
Garrote: Adaptive LASSO Formulation and Consistency

Adaptive LASSO Formulation

\[\hat{\beta} \text{ (garrote)} = \arg \min_{\beta} \left\| y - \sum_{j=1}^{p} x_j \beta_j \right\|^2 + \lambda_n \sum_{j=1}^{p} \hat{w}_j |\beta_j| \]

subject to \(\beta_j \hat{\beta}_j \text{ (ols)} \geq 0, \forall j, \) where \(\gamma = 1, \) \(\hat{w} = 1/|\hat{\beta} \text{ (ols)}| \).

Corollary 2: Consistency of Nonnegative Garrote

If we choose a \(\lambda_n \) such that \(\lambda_n/\sqrt{n} \to 0 \) and \(\lambda_n \to \infty \), then nonnegative garrote is consistent for variable selection.
Adaptive LASSO for GLM

\[\hat{\beta}^{*}(n) (glm) = \arg \min_{\beta} \sum \left(-y_i \left(x_i^T \beta \right) + \phi \left(x_i^T \beta \right) \right) + \lambda_n \sum_{j=1}^{p} \hat{w}_j |\beta_j|. \]

- weight vector \(\hat{w} = 1/|\hat{\beta}(mle)|^{\gamma} \) for some \(\gamma > 0 \).
- \(f(y|x, \theta) = h(y) \exp(y \theta - \phi(\theta)) \), where \(\theta = x^T \beta^* \).
- The Fisher information matrix \(I(\beta^*) = \begin{bmatrix} I_{11} & I_{12} \\ I_{21} & I_{22} \end{bmatrix} \), where \(I_{11} \) is a \(p_0 \times p_0 \) matrix. Then \(I_{11} \) is the Fisher information matrix with the true submodel known.
Theorem 4: Oracle Properties of Adaptive LASSO for GLM

Let \(A^*_n = \{ j : \hat{\beta}^*_j(n) (glm) \neq 0 \} \). Suppose that \(\lambda_n / \sqrt{n} \to 0 \) and \(\lambda_n n^{(\gamma-1)/2} \to \infty \). Then, under some mild regularity conditions, the adaptive LASSO estimate \(\hat{\beta}^*_n (glm) \) must satisfy the following:

1. Consistency in variable selection: \(\lim_n P (A^*_n = A) = 1 \).
2. Asymptotic normality: \(\sqrt{n} \left(\hat{\beta}^*_A(n) (glm) - \beta^*_A \right) \to_d N \left(0, I_{11}^{-1} \right) \).
Experiments for Inconsistency of LASSO

Setting
We let $y = x^T \beta + N(0, \sigma^2)$, where the true regression coefficients are $\beta = (5.6, 5.6, 5.6, 0)$. The predictors $x_i (i = 1, \ldots, n)$ are i.i.d. $N(0, C)$, where C is the C matrix in Corollary 1 with $\rho_1 = -0.39$ and $\rho_2 = 0.23$ (red point).
Experiments for Inconsistency of LASSO

Table 1. Simulation Model 0: The Probability of Containing the True Model in the Solution Path

<table>
<thead>
<tr>
<th></th>
<th>$n = 60, \sigma = 9$</th>
<th>$n = 120, \sigma = 5$</th>
<th>$n = 300, \sigma = 3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>lasso</td>
<td>.55</td>
<td>.51</td>
<td>.53</td>
</tr>
<tr>
<td>adalasso($\gamma = .5$)</td>
<td>.59</td>
<td>.68</td>
<td>.93</td>
</tr>
<tr>
<td>adalasso($\gamma = 1$)</td>
<td>.67</td>
<td>.89</td>
<td>1</td>
</tr>
<tr>
<td>adalasso($\gamma = 2$)</td>
<td>.73</td>
<td>.97</td>
<td>1</td>
</tr>
<tr>
<td>adalasso(γ by cv)</td>
<td>.67</td>
<td>.91</td>
<td>1</td>
</tr>
</tbody>
</table>

NOTE: In this table “adalasso” is the adaptive lasso, and “γ by cv” means that γ was selected by five-fold cross-validation from three choices: $\gamma = .5$, $\gamma = 1$, and $\gamma = 2$.
General Observations

- Comparison: LASSO, Adaptive LASSO, SCAD, and nonnegative garrote.
- $p = 8$ and $p_0 = 3$. Consider a few large effects ($n = 20, 60$) and many small effects ($n = 40, 80$).
- LASSO performs best when the SNR is low.
- Adaptive LASSO, SCAD, and nonnegative garrote outperforms LASSO with a medium or low level of SNR.
- Adaptive LASSO tends to be more stable than SCAD.
- LASSO tends to select noise variables more often than other methods.
Theorem 2: Oracle Properties of Adaptive LASSO

Suppose that $\lambda_n / \sqrt{n} \to 0$ and $\lambda_n n^{(\gamma^{-1})/2} \to \infty$. Then the adaptive LASSO must satisfy the following:

2. Asymptotic normality: $\sqrt{n} \left(\hat{\beta}^*_A(n) - \beta^*_A \right) \to_d N(0, \sigma^2 C_{11}^{-1})$.

Presented by Dongjun Chung

Proof of Theorem 2: Asymptotic Normality

Let $\beta = \beta^* + u/\sqrt{n}$ and

$$
\psi_n(u) = \left\| y - \sum_{j=1}^{p} x_j \left(\beta_j^* + \frac{u_n}{\sqrt{n}} \right) \right\|^2 + \lambda_n \sum_{j=1}^{p} \hat{w}_j \left| \beta_j^* + \frac{u_n}{\sqrt{n}} \right| .
$$

Let $\hat{u}^{(n)} = \text{arg min} \psi_n(u)$; then $\hat{u}^{(n)} = \sqrt{n} \left(\hat{\beta}^*(n) - \beta^* \right)$.

$$
\psi_n(u) - \psi_n(0) = V_{4}^{(n)}(u), \text{ where } V_{4}^{(n)}(u) = u^T \left(\frac{1}{n} X^TX \right) u - 2\epsilon^T X u
$$

$$
+ \frac{\lambda_n}{\sqrt{n}} \sum_{j=1}^{p} \hat{w}_j \sqrt{n} \left(\left| \beta_j^* + \frac{u_n}{\sqrt{n}} \right| - |\beta_j^*| \right)
$$
Proof of Theorem 2: Asymptotic Normality (conti.)

Then, $V_4^{(n)}(u) \rightarrow_d V_4(u)$ for every u, where

$$V_4(u) = \begin{cases} u_A^T C_{11} u_A - 2u_A^T W_A & \text{if } u_j = 0, \forall j \notin A \\ \infty & \text{otherwise} \end{cases}$$

and $W_A = N(0, \sigma^2 C_{11})$. $V_4^{(n)}$ is convex, and the unique minimum of V_4 is $(C_{11}^{-1} W_A, 0)^T$. Following the epi-convergence results of Geyer (1994), we have $\hat{u}_A^{(n)} \rightarrow_d C_{11}^{-1} W_A$ and $\hat{u}_{A^c}^{(n)} \rightarrow_d 0$. Hence, we prove the asymptotic normality part.
The asymptotic normality result indicates that \(\forall j \in A \),
\[\hat{\beta}_j^{*(n)} \xrightarrow{p} \beta_j^*; \]
thus \(P (j \in A_n^*) \rightarrow 1 \). Then it suffices to show that
\(\forall j' \notin A, P (j' \in A_n^*) \rightarrow 0 \). Consider the event \(j' \in A_n^* \). By the KKT optimality conditions,
\[2x_{j'}^T \left(y - X \hat{\beta}^{*(n)} \right) = \lambda_n \hat{w}_{j'}. \]
\[\lambda_n \hat{w}_{j'}/\sqrt{n} = \lambda_n n^{(\gamma - 1)/2} / \left| \sqrt{n} \hat{\beta}_{j'} \right|^{\gamma} \xrightarrow{p} \infty \] and
\[2 \frac{x_{j'}^T (y - X \hat{\beta}^{*(n)})}{\sqrt{n}} = 2 \frac{x_{j'}^T X \sqrt{n} (\beta^* - \hat{\beta}^{*(n)})}{n} + 2 \frac{x_{j'}^T \varepsilon}{\sqrt{n}} \] and each of these two terms converges to some normal distribution. Thus
\[P (j' \in A_n^*) \leq P \left(2x_{j'}^T \left(y - X \hat{\beta}^{*(n)} \right) = \lambda_n \hat{w}_{j'} \right) \rightarrow 0. \]
Corollary 2: Consistency of Nonnegative Garrote

Adaptive LASSO Formulation

\[\hat{\beta} (\text{garrote}) = \arg \min_{\beta} \left\| y - \sum_{j=1}^{p} x_j \beta_j \right\|^2 + \lambda_n \sum_{j=1}^{p} \hat{w}_j |\beta_j| \]

subject to \(\beta_j \hat{\beta}_j (\text{ols}) \geq 0, \forall j \), where \(\gamma = 1, \hat{w} = 1 / |\hat{\beta} (\text{ols})| \).

Corollary 2: Consistency of Nonnegative Garrote

If we choose a \(\lambda_n \) such that \(\lambda_n / \sqrt{n} \rightarrow 0 \) and \(\lambda_n \rightarrow \infty \), then nonnegative garrote is consistent for variable selection.
Let $\hat{\beta}^{*}(n)$ be the adaptive LASSO estimates. By Theorem 2, $\hat{\beta}^{*}(n)$ is an oracle estimator if $\lambda_n/\sqrt{n} \to 0$ and $\lambda_n \to \infty$. To show the consistency, it suffices to show that $\hat{\beta}^{*}(n)$ satisfies the sign constraint with probability tending to 1. Pick any j. If $j \in A$, then $\hat{\beta}^{*}(n) (\gamma = 1)_j \hat{\beta} (\text{ols})_j \to_p (\beta^*_j)^2 > 0$. If $j \notin A$, then $P \left(\hat{\beta}^{*}(n) (\gamma = 1)_j \hat{\beta} (\text{ols})_j \geq 0 \right) \geq P \left(\hat{\beta}^{*}(n) (\gamma = 1)_j = 0 \right) \to 1$. In either case, $P \left(\hat{\beta}^{*}(n) (\gamma = 1)_j \hat{\beta} (\text{ols})_j \geq 0 \right) \to 1$ for any $j = 1, 2, \ldots, p$.

Presented by Dongjun Chung
Theorem 4: Oracle Properties of Adaptive LASSO for GLM

Let $A_n^* = \left\{ j : \hat{\beta}_j^{*(n)} (glm) \neq 0 \right\}$. Suppose that $\lambda_n / \sqrt{n} \to 0$ and $\lambda_n n(\gamma-1)/2 \to \infty$. Then, under some mild regularity conditions, the adaptive LASSO estimate $\hat{\beta}^{*(n)} (glm)$ must satisfy the following:

2. Asymptotic normality:

$$\sqrt{n} \left(\hat{\beta}_A^{*(n)} (glm) - \beta_A^* \right) \to_d N \left(0, \sigma^2 I_{11}^{-1} \right).$$

$\triangleright f (y|x, \theta) = h(y) \exp (y\theta - \phi(\theta))$, where $\theta = x^T \beta^*$.

Presented by Dongjun Chung

Theorem 4: Regularity Conditions

1. The Fisher information matrix is finite and positive definite,

\[I(\beta^*) = E \left[\phi'' \left(x^T \beta^* \right) xx^T \right]. \]

2. There is a sufficiently large enough open set \(O \) that contains \(\beta^* \) such that \(\forall \beta \in O \),

\[\left| \phi''' \left(x^T \beta \right) \right| \leq M(x) < \infty \]

and

\[E \left[M(x) \left| x_j x_k x_l \right| \right] < \infty \]

for all \(1 \leq j, k, l \leq p \).
Proof of Theorem 4: Asymptotic Normality

Let \(\beta = \beta^* + u/\sqrt{n} \). Define
\[
\Gamma_n(u) = \sum_{i=1}^{n} \left\{ -y_i \left(x_i^T (\beta^* + u/\sqrt{n}) \right) + \phi \left(x_i^T (\beta^* + u/\sqrt{n}) \right) \right\} \\
+ \lambda_n \sum_{j=1}^{p} \left| \beta_j^* + u_j/\sqrt{n} \right|
\]

Let \(\hat{u}(n) = \arg\min_u \Gamma_n(u) \); then \(\hat{u}(n) = \sqrt{n} \left(\beta^{*(n)}(glm) - \beta^* \right) \).

Using the Taylor expansion, we have \(\Gamma_n(u) - \Gamma_n(0) = H^{(n)}(u) \), where \(H^{(n)}(u) = A_1^{(n)} + A_2^{(n)} + A_3^{(n)} + A_4^{(n)} \), with

\[
A_1^{(n)} = - \sum_{i=1}^{n} \left[y_i - \phi' \left(x_i^T \beta^* \right) \right] \frac{x_i^Tu}{\sqrt{n}}, \\
A_2^{(n)} = \sum_{i=1}^{n} \frac{1}{2} \phi'' \left(x_i^T \beta^* \right) u^T \frac{x_i^T}{n} u, \\
A_3^{(n)} = \frac{\lambda_n}{\sqrt{n}} \sum_{j=1}^{p} \hat{w}_j \sqrt{n} \left(\left| \beta_j^* + \frac{u_j}{\sqrt{n}} \right| - \left| \beta_j^* \right| \right),
\]
and $A_4^{(n)} = n^{-3/2} \sum_{i=1}^{n} \frac{1}{6} \phi''' \left(x_i^T \tilde{\beta}^* \right) (x_i^T u)^3$, where $\tilde{\beta}^*$ is between β^* and $\beta^* + u/\sqrt{n}$. Then, by the regularity condition 1 and 2, $H^{(n)}(u) \rightarrow_d H(u)$ for every u, where

$$H(u) = \begin{cases} u_A^T l_{11} u_A - 2u_A^T W_A & \text{if } u_j = 0, \forall j \notin A \\ \infty & \text{otherwise} \end{cases}$$

and $W_A = N(0, l_{11})$. $H^{(n)}$ is convex, and the unique minimum of H is $(l_{11}^{-1} W_A, 0)^T$. Following the epi-convergence results of Geyer (1994), we have $\hat{u}_A^{(n)} \rightarrow_d l_{11}^{-1} W_A$ and $\hat{u}_{A^c}^{(n)} \rightarrow_d 0$, and the asymptotic normality part is proven.
Proof of Theorem 4: Consistency

The asymptotic normality result indicates that $j \in A, P (j \in A_n^*) \to 1$. Then it suffices to show that $j' \notin A, P (j' \in A_n^*) \to 0$. Consider the event $j' \in A_n^*$. By the KKT optimality conditions,

$$
\sum_{i=1}^{n} x_{ij'} (y_i - \phi' (x_i^T \hat{\beta}^*(n) (glm))) = \lambda_n \hat{w}_{j'}.
$$

$$
\sum_{i=1}^{n} x_{ij'} (y_i - \phi' (x_i^T \hat{\beta}^*(n) (glm))) / \sqrt{n} = B_1^{(n)} + B_2^{(n)} + B_3^{(n)}
$$

with

$$
B_1^{(n)} = \sum_{i=1}^{n} x_{ij'} (y_i - \phi' (x_i^T \hat{\beta}^*)) / \sqrt{n},
$$

$$
B_2^{(n)} = \left(\frac{1}{n} \sum_{i=1}^{n} x_{ij'} \phi'' (x_i^T \hat{\beta}^*) x_i^T \right) \sqrt{n} \left(\beta^* - \hat{\beta}^*(n) (glm) \right),
$$

$$
B_3^{(n)} = \left(\frac{1}{n} \sum_{i=1}^{n} x_{ij'} \phi''' (x_i^T \tilde{\beta}^{**}) \right) \left(x_i^T \sqrt{n} \left(\beta^* - \hat{\beta}^*(n) (glm) \right) \right)^2 / \sqrt{n},
$$

where $\tilde{\beta}^{**}$ is between $\hat{\beta}^*(n) (glm)$ and β^*.

Presented by Dongjun Chung
Proof of Theorem 4: Consistency (conti.)

\[B_1^{(n)} \text{ and } B_2^{(n)} \text{ converge to some normal distributions and } B_3^{(n)} = O_p(1/\sqrt{n}). \]

\[\lambda_n \hat{w}_{j'}/\sqrt{n} = \lambda_n n^{(\gamma-1)/2} / \left| \sqrt{n} \hat{\beta}_{j'}(glm) \right|^{\gamma} \to_p \infty. \text{ Thus} \]

\[P \left(j' \in A_n^* \right) \leq P \left(\sum_{i=1}^{n} x_{ij'} \left(y_i - \phi' \left(x_i^T \hat{\beta}*(n) (glm) \right) \right) = \lambda_n \hat{w}_{j'} \right) \to 0. \]

and this completes the proof.