Announcements:

- Some course materials will be uploaded in the course website soon. http://www.stat.wisc.edu/Department/Courses/2006.2.html
- The issue with the course enrollment will be handled soon.
- Any other issues? Please let Prof. Johnson know your issues by email rich@stat.wisc.edu.
Announcements:

- Some course materials will be uploaded in the course website soon. http://www.stat.wisc.edu/Department/Courses/2006.2.html
- The issue with the course enrollment will be handled soon.
- Any other issues? Please let Prof. Johnson know your issues by email rich@stat.wisc.edu.
Announcements:

- Some course materials will be uploaded in the course website soon. http://www.stat.wisc.edu/Department/Courses/2006.2.html
- The issue with the course enrollment will be handled soon.
- Any other issues? Please let Prof. Johnson know your issues by email rich@stat.wisc.edu.
Announcements:

- Some course materials will be uploaded in the course website soon. http://www.stat.wisc.edu/Department/Courses/2006.2.html
- The issue with the course enrollment will be handled soon.
- Any other issues? Please let Prof. Johnson know your issues by email rich@stat.wisc.edu.
Agenda for Today’s Lecture

Aim to understand:

1. Concepts: “unit”, “population of units”, “statistical population” and “sample”.
2. Difference between “population of units” and “statistical population”.
4. Random number table.
Agenda for Today’s Lecture

Aim to understand:
1. Concepts: “unit”, “population of units”, “statistical population” and “sample”.
2. Difference between “population of units” and “statistical population”.
3. Sampling issue
4. Random number table
Agenda for Today’s Lecture

Aim to understand:

1. Concepts: “unit”, “population of units”, “statistical population” and “sample”.
2. Difference between “population of units” and “statistical population”.
3. Sampling issue
4. Random number table
Agenda for Today’s Lecture

Aim to understand:

1. Concepts: “unit”, “population of units”, “statistical population” and “sample”.
2. Difference between “population of units” and “statistical population”.
3. Sampling issue
4. Random number table
Agenda for Today’s Lecture

Aim to understand:

1. Concepts: “unit”, “population of units”, “statistical population” and “sample”.
2. Difference between “population of units” and “statistical population”.
3. Sampling issue
4. Random number table
 Agenda for Today’s Lecture

Aim to understand:

1. Concepts: “unit”, “population of units”, “statistical population” and “sample”.
2. Difference between “population of units” and “statistical population”.
3. Sampling issue
4. Random number table
Unit and Population of Units:

1. **Unit**: a single entity, usually an object or person, whose characteristics are of interest.
2. **Population of Units**: the complete collection of units about which information is sought.
Unit and Population of Units:

1. **Unit**: a single entity, usually an object or person, whose characteristics are of interest.

2. **Population of Units**: the complete collection of units about which information is sought.
Basic Concepts:

Unit and Population of Units:

1. **Unit**: a single entity, usually an object or person, whose characteristics are of interest.

2. **Population of Units**: the complete collection of units about which information is sought.
Basic Concepts:

Statistical Population and Sample:

1. **Statistical Population**: the set of all measurements (or record of some quality trait) corresponding to each unit in the entire population of units about which information is sought.

2. **Sample** from a statistical population: the subset of measurements that are actually collected in the course of an investigation.
Basic Concepts:

Statistical Population and Sample:

1. **Statistical Population**: the set of all measurements (or record of some quality trait) corresponding to each unit in the entire population of units about which information is sought.

2. **Sample** from a statistical population: the subset of measurements that are actually collected in the course of an investigation.
Basic Concepts:

Statistical Population and Sample:

1. **Statistical Population**: the set of all measurements (or record of some quality trait) corresponding to each unit in the entire population of units about which information is sought.

2. **Sample** from a statistical population: the subset of measurements that are actually collected in the course of an investigation.
Basic Concepts:

Example 1:
“What are GPAs of students’ currently enrolled in this class?”
- Population of Units:
- Statistical Population:
- Variables/Characteristics:

Example 2:
“Students currently enrolled in this class are right/left-handed?”
- Population of Units:
- Statistical Population:
- Variables/Characteristics:
Basic Concepts:

Example 1:

“What are GPAs of students’ currently enrolled in this class?”

- **Population of Units:**
 - Statistical Population:
 - Variables/Characteristics:

Example 2:

“Students currently enrolled in this class are right/left-handed?”

- **Population of Units:**
 - Statistical Population:
 - Variables/Characteristics:
Basic Concepts:

Example 1:

“What are GPAs of students’ currently enrolled in this class?”

- Population of Units: All the students currently enrolled in this class.
- Statistical Population:
- Variables/Characteristics:

Example 2:

“Students currently enrolled in this class are right/left-handed?”

- Population of Units:
- Statistical Population:
- Variables/Characteristics:
Basic Concepts:

Example 1:
“What are GPAs of students’ currently enrolled in this class?”
- Population of Units: All the students currently enrolled in this class.
- Statistical Population:
- Variables/Characteristics:

Example 2:
“Students currently enrolled in this class are right/left-handed?”
- Population of Units:
- Statistical Population:
- Variables/Characteristics:
Basic Concepts:

Example 1:
“What are GPAs of students’ currently enrolled in this class?”
- Population of Units: All the students currently enrolled in this class.
- Statistical Population: All the measurements of GPAs (numerical numbers) from all the students.

Example 2:
“Students currently enrolled in this class are right/left-handed?”
- Population of Units:
- Statistical Population:
- Variables/Characteristics:
Basic Concepts:

Example 1:
“What are GPAs of students’ currently enrolled in this class?”
- Population of Units: All the students currently enrolled in this class.
- Statistical Population: All the measurements of GPAs (numerical numbers) from all the students.
- Variables/Characteristics:

Example 2:
“Students currently enrolled in this class are right/left-handed?”
- Population of Units:
- Statistical Population:
- Variables/Characteristics:
Basic Concepts:

Example 1:

“What are GPAs of students’ currently enrolled in this class?”

- Population of Units: All the students currently enrolled in this class.
- Statistical Population: All the measurements of GPAs (numerical numbers) from all the students.
- Variables/Characteristics: GPA

Example 2:

“Students currently enrolled in this class are right/left-handed?”

- Population of Units:
- Statistical Population:
- Variables/Characteristics:
Basic Concepts:

Example 1:

“What are GPAs of students’ currently enrolled in this class?”

- Population of Units: All the students currently enrolled in this class.
- Statistical Population: All the measurements of GPAs (numerical numbers) from all the students.
- Variables/Characteristics: GPA

Example 2:

“Students currently enrolled in this class are right/left-handed?”

- Population of Units:
- Statistical Population:
- Variables/Characteristics:
Basic Concepts:

Example 1:
“What are GPAs of students’ currently enrolled in this class?”
- Population of Units: All the students currently enrolled in this class.
- Statistical Population: All the measurements of GPAs (numerical numbers) from all the students.
- Variables/Characteristics: GPA

Example 2:
“Students currently enrolled in this class are right/left-handed?”
- Population of Units:
- Statistical Population:
- Variables/Characteristics:
Basic Concepts:

Example 1:
“What are GPAs of students’ currently enrolled in this class?”
- Population of Units: All the students currently enrolled in this class.
- Statistical Population: All the measurements of GPAs (numerical numbers) from all the students.
- Variables/Characteristics: GPA

Example 2:
“Students currently enrolled in this class are right/left-handed?”
- Population of Units: All the students currently enrolled in this class.
- Statistical Population:
- Variables/Characteristics:
Basic Concepts:

Example 1:
“What are GPAs of students’ currently enrolled in this class?”
- Population of Units: All the students currently enrolled in this class.
- Statistical Population: All the measurements of GPAs (numerical numbers) from all the students.
- Variables/Characteristics: GPA

Example 2:
“Students currently enrolled in this class are right/left-handed?”
- Population of Units: All the students currently enrolled in this class.
- Statistical Population:
- Variables/Characteristics:
Basic Concepts:

Example 1:
“What are GPAs of students’ currently enrolled in this class?”
- Population of Units: All the students currently enrolled in this class.
- Statistical Population: All the measurements of GPAs (numerical numbers) from all the students.
- Variables/Characteristics: GPA

Example 2:
“Students currently enrolled in this class are right/left-handed?”
- Population of Units: All the students currently enrolled in this class.
- Statistical Population: All the responses (right or left) from all the students.
- Variables/Characteristics:
Basic Concepts:

<table>
<thead>
<tr>
<th>Example 1:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>“What are GPAs of students’ currently enrolled in this class?”</td>
<td></td>
</tr>
<tr>
<td>Population of Units: All the students currently enrolled in this class.</td>
<td></td>
</tr>
<tr>
<td>Statistical Population: All the measurements of GPAs (numerical numbers) from all the students.</td>
<td></td>
</tr>
<tr>
<td>Variables/Characteristics: GPA</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Example 2:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>“Students currently enrolled in this class are right/left-handed?”</td>
<td></td>
</tr>
<tr>
<td>Population of Units: All the students currently enrolled in this class.</td>
<td></td>
</tr>
<tr>
<td>Statistical Population: All the responses (right or left) from all the students.</td>
<td></td>
</tr>
<tr>
<td>Variables/Characteristics:</td>
<td></td>
</tr>
</tbody>
</table>
Basic Concepts:

Example 1:
“What are GPAs of students’ currently enrolled in this class?”
- Population of Units: All the students currently enrolled in this class.
- Statistical Population: All the measurements of GPAs (numerical numbers) from all the students.
- Variables/Characteristics: GPA

Example 2:
“Students currently enrolled in this class are right/left-handed?”
- Population of Units: All the students currently enrolled in this class.
- Statistical Population: All the responses (right or left) from all the students.
- Variables/Characteristics: Right/left-handed
Basic Concepts:

Example 1:
“What are GPAs of students’ currently enrolled in this class?”
- Population of Units: All the students currently enrolled in this class.
- Statistical Population: All the measurements of GPAs (numerical numbers) from all the students.
- Variables/Characteristics: GPA

Example 2:
“Students currently enrolled in this class are right/left-handed?”
- Population of Units: All the students currently enrolled in this class.
- Statistical Population: All the responses (right or left) from all the students.
- Variables/Characteristics: Right/left-handed

NOTE: From the same population of units, we can have different statistical populations depending on variables/characteristics.
Population of Units vs Statistical Population:

- **Population of Units**: the complete collection of units (objects or persons) about which information is sought.
- **Statistical Population**: the set of all measurements (or record of some quality trait) corresponding to each unit in the entire population of units about which information is sought.
Population of Units vs Statistical Population:

- **Population of Units**: the complete collection of units (objects or persons) about which information is sought.

- **Statistical Population**: the set of all measurements (or record of some quality trait) corresponding to each unit in the entire population of units about which information is sought.
Why Need Sample?

Consider the following example.

Example 3:
A host of a radio music show announced that she wanted to know which singer is the favorite among city residents.

- Population of Units:
- Statistical Population:
Why Need Sample?

Consider the following example.

Example 3:
A host of a radio music show announced that she wanted to know which singer is the favorite among city residents.

- Population of Units:
- Statistical Population:
Consider the following example.

Example 3:

A host of a radio music show announced that she wanted to know which singer is the favorite among city residents.

- Population of Units:
- Statistical Population:
Consider the following example.

Example 3:
A host of a radio music show announced that she wanted to know which singer is the favorite among city residents.

- **Population of Units:** All the residents in the city.
- **Statistical Population:**
Consider the following example.

Example 3:
A host of a radio music show announced that she wanted to know which singer is the favorite among city residents.

- **Population of Units:** All the residents in the city.
- **Statistical Population:**
Why Need Sample?

Consider the following example.

Example 3:

A host of a radio music show announced that she wanted to know which singer is the favorite among city residents.

- **Population of Units:** All the residents in the city.
- **Statistical Population:** The collection of singer preferences of all the city residents.
Consider the following example.

Example 3:
A host of a radio music show announced that she wanted to know which singer is the favorite among city residents.

- Population of Units: All the residents in the city.
- Statistical Population: The collection of singer preferences of all the city residents.

What would be some difficulties to collect singer preferences from all the city residents?
Consider the following example.

Example 3:
A host of a radio music show announced that she wanted to know which singer is the favorite among city residents.

- **Population of Units:** All the residents in the city.
- **Statistical Population:** The collection of singer preferences of all the city residents.

What would be some difficulties to collect singer preferences from all the city residents?

Nearly impossible to question all the residents in a large city like New York! Must necessarily settle for taking a sample.
Sampling Issue:

Example 3 - Continued:

A host of a radio music show announced that she wanted to know which singer is the favorite among city residents. Listeners were then asked to call in and name their favorite singer.

- Those who listen to the particular radio station are already a special subgroup with similar listening tastes.
- Those who take the time and effort to call are usually those who feel strongest about their opinions.
Example 3 - Continued:

A host of a radio music show announced that she wanted to know which singer is the favorite among city residents. **Listeners were then asked to call in and name their favorite singer.**

- Those who listen to the particular radio station are already a special subgroup with similar listening tastes.
- Those who take the time and effort to call are usually those who feel strongest about their opinions.
Example 3 - Continued:

A host of a radio music show announced that she wanted to know which singer is the favorite among city residents. **Listeners were then asked to call in and name their favorite singer.**

What would be some issues to collect a sample in this way?

- Those who listen to the particular radio station are already a special subgroup with similar listening tastes.
- Those who take the time and effort to call are usually those who feel strongest about their opinions.
Sampling Issue:

Example 3 - Continued:

A host of a radio music show announced that she wanted to know which singer is the favorite among city residents. Listeners were then asked to call in and name their favorite singer.

What would be some issues to collect a sample in this way?

The sample would not be very representative of the responses for all the city residents!

- Those who listen to the particular radio station are already a special subgroup with similar listening tastes.
- Those who take the time and effort to call are usually those who feel strongest about their opinions.
Example 3 - Continued:

A host of a radio music show announced that she wanted to know which singer is the favorite among city residents. Listeners were then asked to call in and name their favorite singer.

What would be some issues to collect a sample in this way?

The sample would not be very representative of the responses for all the city residents!

- Those who listen to the particular radio station are already a special subgroup with similar listening tastes.
- Those who take the time and effort to call are usually those who feel strongest about their opinions.
Example 3 - Continued:

A host of a radio music show announced that she wanted to know which singer is the favorite among city residents. Listeners were then asked to call in and name their favorite singer.

What would be some issues to collect a sample in this way?

The sample would not be very representative of the responses for all the city residents!

- Those who listen to the particular radio station are already a special subgroup with similar listening tastes.
- Those who take the time and effort to call are usually those who feel strongest about their opinions.
Sampling Issue:

Example 3 - Continued:

A host of a radio music show announced that she wanted to know which singer is the favorite among city residents. Listeners were then asked to call in and name their favorite singer.

What would be some issues to collect a sample in this way?

The sample would not be very representative of the responses for all the city residents!

- Those who listen to the particular radio station are already a special subgroup with similar listening tastes.
- Those who take the time and effort to call are usually those who feel strongest about their opinions.

Then how to get a sample that is more representative of the population of units?
How the table is constructed?
Suppose ten balls numbered 0, 1, . . . , 9 are placed in an urn and shuffled. One is drawn and the digit recorded. It is then replaced, the balls shuffled, another one drawn and the digit recorded. The digits in Table 7 at the end of the textbook were actually generated by a computer that closely simulates this procedure.

Why the table is called random?
The chance mechanism that generated the random number table ensures that each of the single digits has the same chance of occurrence, that all pairs 00, 01, . . ., 99 have the same chance of occurrence, and so on. Further, any collection of digits is unrelated to any other digit in the table. Because of these properties, the digits are called random.
Random Number Table:

How the table is constructed?
Suppose ten balls numbered 0, 1, . . . , 9 are placed in an urn and shuffled. One is drawn and the digit recorded. It is then replaced, the balls shuffled, another one drawn and the digit recorded. The digits in Table 7 at the end of the textbook were actually generated by a computer that closely simulates this procedure.

Why the table is called random?
The chance mechanism that generated the random number table ensures that each of the single digits has the same chance of occurrence, that all pairs 00, 01, . . . , 99 have the same chance of occurrence, and so on. Further, any collection of digits is unrelated to any other digit in the table. Because of these properties, the digits are called random.
Random Number Table:

How the table is constructed?
Suppose ten balls numbered 0, 1, . . . , 9 are placed in an urn and shuffled. One is drawn and the digit recorded. It is then replaced, the balls shuffled, another one drawn and the digit recorded. The digits in Table 7 at the end of the textbook were actually generated by a computer that closely simulates this procedure.

Why the table is called random?
The chance mechanism that generated the random number table ensures that each of the single digits has the same chance of occurrence, that all pairs 00, 01, . . . , 99 have the same chance of occurrence, and so on. Further, any collection of digits is unrelated to any other digit in the table. Because of these properties, the digits are called random.
Random Number Table:

How to use the random table?

Example 4:

Eighty specialty pumps were manufactured last week. Use Table below to select a sample of size \(n = 5 \) to carefully test and recheck for possible defects before they are sent to the purchaser. Select the sample without replacement so that the same pump does not appear twice in the sample.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3938</td>
<td>4197</td>
<td>6511</td>
</tr>
<tr>
<td>7478</td>
<td>7565</td>
<td>5581</td>
</tr>
<tr>
<td>4854</td>
<td>9157</td>
<td>9158</td>
</tr>
<tr>
<td>7849</td>
<td>7520</td>
<td>2547</td>
</tr>
<tr>
<td>6689</td>
<td>1946</td>
<td>2574</td>
</tr>
<tr>
<td>9377</td>
<td>6951</td>
<td>6519</td>
</tr>
<tr>
<td>8085</td>
<td>4948</td>
<td>2228</td>
</tr>
<tr>
<td>3117</td>
<td>1568</td>
<td>0237</td>
</tr>
<tr>
<td>0434</td>
<td>4586</td>
<td>4150</td>
</tr>
<tr>
<td>2929</td>
<td>7089</td>
<td>3109</td>
</tr>
</tbody>
</table>
Random Number Table:

1. Number the pumps from 1 to 80 to identify.
2. Select a row and column from the table randomly, say, row 1 and column 5.
3. Read the digits in columns 5 and 6 until five different numbers are selected.
 41, 75, 91, 75, 19, 69, 49