Stat 992: Lecture 36
Smoothness of random fields

Moo K. Chung mchung@stat.wisc.edu
April 25, 2004

Solution to Problem 37. (Tulaya Limpiti). The smoothness of noise can be measured via the covariance matrix of the derivative field.

1. Consider zero mean unit variance Gaussian field $Y = K_\sigma * W$ where W Gaussian white noise with the Dirac-delta covariance function. The covariance of Y has been shown to be

$$R_Y(x, y) = \int K_\sigma(x-z)K_\sigma(y-z)\,dz$$

which should be isotropic, i.e. $R_Y(x, y) = f(\|x-y\|^2)$ for some function f. Field Y does not give unit variance. So we normalize Y by the square root of

$$\text{Var} Y = R_Y(x, x) = f(0) = \int K_\sigma^2(x-z)\,dz.$$

Note $K_\sigma^2(x) = \frac{1}{(2\sqrt{\pi}\sigma)^n}K_\sigma/\sqrt{x}(x)$. So $Y = (2\sqrt{\pi}\sigma)^n/2 K_\sigma * W$ gives a unit variance field. The way to generate this field numerically is we first simulate white noise $N(0, 1)$ and perform kernel smoothing followed by the multiplication of $(2\sqrt{\pi}\sigma)^n/2$.

2. The cross-covariance of the above zero mean unit variance field is given by

$$E[\partial_{x_i} Y(x) \partial_{x_j} Y(y)] = \int \frac{\partial \sigma(x-z)K_\sigma(y-z)}{\partial \sigma(z)K_\sigma(z)}\,dz$$

Then

$$\text{Var}(\partial Y) = \int \frac{\partial K_\sigma(x)[\partial K_\sigma(x)]^T}{\partial K_\sigma(x)K_\sigma(x)}\,dx.$$

3. For any isotropic fields Y_i it can be shown that $\partial_{x_i} Y$ and $\partial_{x_j} Y$ are uncorrelated if $i \neq j$. It is a trivial property of the isotropic field. We have cross-covariance

$$E[\partial_{x_i} Y(x) \partial_{x_j} Y(y)] = \partial_{x_i} \partial_{x_j} f(\|x - y\|^2).$$

Since $f(\|x\|^2) = f(\sum_{i=1}^n x_i^2)$, $\partial_{x_i} f(\|x\|^2) = 2x_i f'(\|x\|^2)$. Then,

$$\partial_{x_i} \partial_{x_j} f(\|x\|^2) = 2\delta_{ij} f'(\|x\|^2) + 4x_i x_j f''(\|x\|^2)$$

Letting $x = y$ in equation (1),

$$E[\partial_{x_i} Y(x) \partial_{x_j} Y(x)] = \partial_{x_i} \partial_{x_j} f(0) = 2\delta_{ij} f'(0).$$

Hence all partial derivatives are uncorrelated.

A different way to see this is to compute the covariance directly from (3).

$$E[\partial_{x_i} Y(x) \partial_{x_j} Y(x)] = \int \frac{\partial \sigma_i(x)[\partial \sigma_j(x)]^T}{\partial \sigma(x)\sigma(x)}\,dx$$

where this formula is given.

Next lecture will continue the discussion of anisotropic smoothing.