Textbook Exercises
6.12, 6.20, 6.38, 6.50, 6.64, 6.70, 6.84, 6.97, 6.120, 6.130, 6.145, 6.150

Computer Exercises
For each R problem, turn in answers to questions with the written portion of the homework. Send the R code for the problem to Katherine Goode. The answers to questions in the written part should be well written, clear, and organized. The R code should be commented and well formatted.

R problem 1 Ideally, a 95% confidence interval will be as tightly clustered around the true value as possible, and will have a 95% coverage probability. When the possible data values are discrete, (such as in the case of sample proportions which can only be a count over the sample size), the true coverage or capture probability is not exactly 0.95 for every \(p \). This problem examines the true coverage probability for three different methods of making confidence intervals.

To compute the coverage probability of a method, recognize that each possible value \(x \) from 0 to \(n \) for a given method results in a confidence interval with a lower bound \(a(x) \) and an upper bound \(b(x) \). The interval will capture \(p \) if \(a(x) < p < b(x) \). To compute the capture probability of a given \(p \), we need to add up all of the binomial probabilities for the \(x \) values that capture \(p \) in the interval. For a sample size \(n \) and true population proportion \(p \), this coverage probability is

\[
P(p \text{ in interval}) = \sum_{x:a(x)<p<b(x)} \binom{n}{x} p^x (1-p)^{n-x}
\]

To compute this in R, you need to find the lower and upper bounds of the confidence interval for each possible outcome \(x \), and add the probabilities of the outcomes that capture \(p \). Here is some code to get you started using the textbook method for an example where \(x = 10 \) and \(p = 0.3 \).

```r
x = 0:10
p.hat = x/10 # will be a vector
se = sqrt(p.hat*(1-p.hat)/10) # also a vector
z = qnorm(0.975)
a = p.hat - z*se # also a vector
b = p.hat + z*se # also a vector
x[ (a < 0.3) & (0.3 < b) ] # x that capture p
```

[1] 2 3 4 5 6

For each of the following methods, find which outcomes \(x \) result in confidence intervals that capture \(p \) and compute the coverage probability from a sample of size \(n = 60 \) when \(p = 0.4 \).

1. Normal from maximum likelihood estimate, \(\hat{p} = X/n \), SE = \(\sqrt{\hat{p}(1-\hat{p})/n} \), with the interval

\[
\hat{p} \pm 1.96\text{SE}
\]

2. Normal from adjusted maximum likelihood estimate, \(\hat{p} = (X+2)/(n+4) \), SE = \(\sqrt{\hat{p}(1-\hat{p})/(n+4)} \), with the interval

\[
\hat{p} \pm 1.96\text{SE}
\]
3. Within $z^2/2$ of the maximum likelihood loglikelihood. For this method, the file logl.R has a function logl.ci.p() which returns the lower and upper bounds of a 95% confidence interval given n and x. You can graph the loglikelihood using glogl.p() for n, x, and $z = 1.96$ to see if the returned values make sense.

R Problem 2 Repeat the previous problem, but for $n = 60$ and $p = 0.1$.

R Problem 3 This problem examines a t distribution with 4 degrees of freedom.

1. Draw a graph of a t distribution with 4 degrees of freedom and a standard normal curve from -4 to 4.
2. Find the area to the right of 2 under each curve.
3. Find the 0.975 quantile of each curve.

R Problem 4 Repeat the previous problem, but for a t distribution with 20 degrees of freedom.

R Problem 5 Repeat the previous problem, but for a t distribution with 100 degrees of freedom.

Here is some sample code to draw graphs of continuous distributions.

```r
x = seq(-4,4,0.001)
z = dnorm(x)
y.10 = dt(x, df=10)
d = data.frame(x,z,y.10)
require(ggplot2)
## Loading required package: ggplot2

ggplot(d) +
geom_line(aes(x=x,y=y.10),color="blue") + 
geom_line(aes(x=x,y=z),color="red") + 
ylab('density') +
ggtitle("t(10) distribution in blue, N(0,1) in red")
```

![Graph of t(10) distribution in blue, N(0,1) in red.](image)