Math 340–Problem Solving Seminar, Fall 2001, Problem Set 2

(1) Starting with any three-digit number \(n \) (such as \(n = 625 \)), we obtain a new number \(f(n) \) which is equal to the sum of the three digits of \(n \), their three products in pairs, and the product of all three digits.

(a) Find the value of \(\frac{n}{f(n)} \) when \(n = 625 \). (The answer is an integer!)

(b) Find all three-digit numbers \(n \) such that the ratio \(\frac{n}{f(n)} = 1 \).

(2) The sequence of integers \(u_0, u_1, u_2, u_3, \ldots \) satisfies \(u_0 = 1 \) and

\[
u_{n+1}u_{n-1} = ku_n \quad \text{for each} \quad n \geq 1,
\]

where \(k \) is some fixed positive integer. If \(u_{2000} = 2000 \), determine all possible values of \(k \).

(3) Let \(a \) and \(b \) be positive integers. Prove that

\[
4(a^3 + b^3) \geq (a + b)^3
\]

(4) Given any real number \(a \neq -1 \), the sequence \(x_1, x_2, x_3, \ldots \) is defined by

\[x_1 = a \quad \text{and} \quad x_{n+1} = x_n^2 + x_n \quad \text{for all} \quad n \geq 1.\]

Let

\[y_n = \frac{1}{1 + x_n}, \quad S_n = \sum_{i=1}^{n} y_i, \quad P_n = \prod_{i=1}^{n} y_i.
\]

Prove that

\[aS_n + P_n = 1 \quad \text{for all} \quad n \geq 1.
\]

(HINT: First show that \(P_n = \frac{a}{x_{n+1}} \).)

(5) Given that \(x \) is a positive integer, find all solutions of

\[
\left\lfloor \sqrt{1} \right\rfloor + \left\lfloor \sqrt{2} \right\rfloor + \cdots + \left\lfloor \sqrt{x^3 - 1} \right\rfloor = 400.
\]

Note: \([z]\) denotes the largest integer \(\leq z \).