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1 Stat1 and c-Jun ChIP-chip data.

Stat1 data can be downloaded from the ENCODE Yale Stat1 Sites track using the Yale 50-38

Sites table of the UCSC Genome Browser (http://genome.ucsc.edu). c-Jun data are available

at the ENCODE Yale ChIP Sites track using the Yale cJun table. There are a total of 345 Stat1

bound regions and 200 c-Jun bound regions identified by the Snyder Lab at the Yale University.

Their analysis report a quantitative score for each probe by using a 501 bps sliding window centered

on each oligonucleotide probe and computing the pseudomedian signal of all log2 ratios of treatment

and control measurements within the window. In our application, peaks are ranked according to

their ChIP-chip score which is computed as the mean of probe specific summary measurements

within a peak.

2 CTCM analysis of the Stat1 data

In the analysis of Stat1 data, the best performance is achieved with the CTCM logistic regression

model M2. For CTCM(M3), we observe that for the sample size of N = 20, increasing the flanking

sequence length to 300 bases from 100 bases leads to a worse position weight matrix estimate.

Examining the ChIP-chip scores for several of these 20 sequences, we note that the variability

in ChIP-chip scores does not increase significantly when considering 300 bases rather than 100
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Figure 1: Stat1: Illustration of the sequence length and sample size effect in the motif analysis
of ChIP-chip identified regions. [N, L], N = 20, 80, 100 and L = 100, 300, 500, refer to N highest
scoring peak regions and L flanking bases to the right and left of the mid point of the peak. Mean
squared error is calculated by averaging the squared distance between the components of the true
and estimated position weight matrices. MEME(wk), k = 1, 2 are two weighted versions of MEME.
MDSCAN* refers to use of the best position weight matrix estimate in the mean squared error sense
among the top 5 reported by MDSCAN. M1, M2, and M3 refer to beta prior, logistic regression,
and piecewise constant linear model formulations of CTCM.

whereas it increases significantly when the flanking sequence length is 500 bases. An example of

this phenomenon is displayed in Figure 2, where we plot ChIP-chip scores for a particular peak

as a function of the bases around the mid point of the peak. The lack of variability among the

ChIP-chip scores up to 300 bases around the mid-point of the peak is apparent from this plot. At

the flanking sequence length of 500 bases, we start to observe more variability in ChIP-chip scores.

This is utilized by CTCM thereby leading to a decrease in the distance criteria.

3 JASPAR position weight matrices

Figure 3 displays the histogram of information contents of 111 position weight matrices in JAS-

PAR. The triangles indicate the information content of the position weight matrices used in the

simulations.
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Figure 2: Stat1: ChIP-chip scores along a peak on chromosome 13 with mid point position at
112814184 bases.

Information content

D
en

si
ty

0.
0

0.
5

1.
0

1.
5

2.
0

0.0

0.5

1.0

1.5

cJun
●

Stat1

Figure 3: Histogram of the information contents of the position weight matrices in the JASPAR
database. The triangles depict the three position weight matrices used in the simulation studies.
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Factor a = 0.1 a = 0.3 a = 0.5 a = 0.7 a = 1.3
GABPA df 3 4 6 6 6

β0 -19 -18 -19 -19.3 -19.3
β1 1 0.95 0.9 0.925 1

BC2 df 3 4 6 6 6
β0 -19.1 -18 -19.45 -19.3 -19
β1 1 0.95 0.9 0.925 1

TT3 df 3 4 6 6 6
β0 -19 -18 -19 -19.3 -19.3
β1 1 0.95 0.9 0.925 1.05

Table 1: Simulation parameters for the logistic regression model of Pr(Zil = 1 | Til).

4 Simulation model

The simulation studies are tailored towards investigating the conditional formulation of the TCM

model. We generated 50 sequences of length L = 800 from a multinomial model with equal nu-

cleotide probabilities and implanted motif occurrences from each position weight matrix based on

the simulated ChIP-chip data. The ChIP-chip score corresponding to each probe of length 25 base

pairs is simulated from a chi-square distribution. We decided along each sequence whether a motif

starts at a particular site with a probability from a logistic regression model. The logistic regression

model was chosen as the simulation model since it fitted the case study data considered in Section

4.1 of our paper. After implanting a motif, we slide to the site next to the end of the motif and

continue deciding whether or not to implant a new motif. This process exactly mimics the TCM

random process as described in Bailey (1995). The motif abundance parameter is adjusted by con-

trolling the degrees of freedom of the corresponding chi-square distribution and parameters β0 and

β1. These parameters for all the simulations are summarized in Table 1.
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5 Summary of the simulation results

The results are summarized for each position weight matrix and abundance combination in Figures

4, 5, 6.

6 A note on the existence of the maximum likelihood esti-

mator in the logistic regression (M2) CTCM model with

small sample sizes

Theorem 1 Consider the conditional two component mixture model with the logistic regression

prior model Pr(Zk = 1 | Tk) = logit(β0 + β1Tk) for integrating the quantitative ChIP-chip infor-

mation. Assume that at t-th iteration of the M-step step, we have ζk = Pr(Zk = 1 | Xk, Tk, Ψ̂
t) ∈

{0, 1}, ∀k, where Ψ̂t represents the parameters estimates from the previous M-step. If there exists

β∗ = (β0, β) such that

(β0 + β1Tk) ≥ 0 if ζk = 1,

(β0 + β1Tk) < 0 if ζk = 0,

where ζk represents the posterior probability of k-th subsequence being a motif, then the EM algorithm

converges to non-finite estimates for the vector parameter β∗.

Proof: We note that the M-step of the EM algorithm in our conditional TCM formulation has the

following form when we use a logistic regression model to incorporate the quantitative ChIP-chip

information:
N∑

i=1

Li−W+1∑
l=1

{ζi,l(β0 + β1Ti,l)− log (1 + exp (β0 + β1Ti,l))} .

Since each subsequence is treated independently in the CTCM model, we will index the
∑N

i=1

∑Li−W+1
l=1

observations as k = 1, · · · , N ′. Then the objective function involving β0 and β1 in the M-step be-

comes

l(β0, β1) =
N ′∑
k=1

{ζk(β0 + β1Tk)− log (1 + exp (β0 + β1Tk))} , (1)

5



where 0 ≤ ζk ≤ 1. We note that when ζk ∈ {0, 1} ∀k, e.g., when the posterior probabilities of

start sites is exactly 0 or 1, equation (1) is exactly a logistic regression log-likelihood. In this case,

it is well known that there may not exist any finite maximum likelihood estimators for β0 and β1

(Albert and Anderson, 1984). This is easily seen by considering the following case: Assume that

there exists a β∗ = (β,
0β

)
1 such that

(β0 + β1Tk) ≥ 0 if ζk = 1,

(β0 + β1Tk) < 0 if ζk = 0.

Then, for any c > 0, we have

l(cβ0, cβ1) =
N ′∑
k=1

{ζk(cβ0 + cβ1Tk)− log (1 + exp (cβ0 + cβ1Tk))} ,

=
N ′∑

k=1,ζk=1

{(cβ0 + cβ1Tk)− log (1 + exp (cβ0 + cβ1Tk))} ,

−
N ′∑

k=1,ζk=0

log (1 + exp (cβ0 + cβ1Tk)) .

As c −→ ∞, the above expression converges to 0. Furthermore, we know that l(β0, β1) ≤ 0,

∀(β0, β1). Therefore, a finite maximum likelihood estimator does not exist for the vector parameter

β∗ satisfying the above separability condition. We note that perfect separability is largely a small

sample issue and in fact it hardly ever happens with noisy ChIP-chip tiling array data. However,

it is a concern when, say, performing simulation studies with small sample sizes. Additionally, as

the complete data log-likelihood factorizes into two parts involving sequence model parameters and

parameters of the prior distribution, the EM algorithm still provides consistent estimates for the

sequence model parameters (e.g., parameters of the position weight matrix and the background).

References

Albert, A. and Anderson, J. (1984). On the existence of maximum likelihood estimates in logistic

regression models, Biometrika 71: 1–10.

Bailey, T. L. (1995). Discovering motifs in DNA and protein sequences: The approximate common
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Figure 4: Simulation results with the GABPA position weight matrix. Top and bottom panel plots
display the boxplots of the area under the ROC curve and mean squared errors for various methods
at different abundance levels a. CTCM(b) corresponds to CTCM M3 model with a bin size of b.
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Figure 5: Simulation results with the TAL1-TCF3 position weight matrix. Top and bottom panel
plots display the boxplots of the area under the ROC curve and mean squared errors for various
methods at different abundance levels a. CTCM(b) corresponds to CTCM M3 model with a bin
size of b. 9
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Figure 6: Simulation results with the Broad-complex 2 position weight matrix. Top and bottom
panel plots display the boxplots of the area under the ROC curve and mean squared errors for
various methods at different abundance levels a. CTCM(b) corresponds to CTCM M3 model with
a bin size of b. 10
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