Continuing 5.2, 5.4

Recall 1 (CLT). Let Y_1, \ldots, Y_n be independent copies of Y. Then

- 1) $\mu_{\bar{Y}} = \mu_Y$
- 2) $\sigma_{\bar{Y}} = \frac{\sigma_Y}{\sqrt{n}}$
- 3a) If n is large ($n \geq 30$), then regardless of the distribution of Y, $\bar{Y} \sim N(\mu_Y, \frac{\sigma_Y}{\sqrt{n}})$ approximately.
- 3b) If Y is already $N(\mu_Y, \sigma_Y)$, then for any n, \bar{Y} is exactly $N(\mu_Y, \frac{\sigma_Y}{\sqrt{n}})$

Note 1. This forms the basis for a large part of statistics.

Example 1. Recall the \bar{Y} for the Mg example with $n = 100$. ($\mu_Y = 24.32, \sigma_Y = .67$) A computer calculates a 12.24% probability that $\bar{Y} < 24.25$, or $P(\bar{Y} < 24.25) = .1224$. Use the CLT to calculate this probability.

Solution. By the CLT,

$$\bar{Y} \sim N(\mu = 24.32, \frac{\sigma_Y}{\sqrt{n}} = \frac{.67}{\sqrt{100}} = .067).$$

Then,

$$P(\bar{Y} < 24.25) = P \left(\frac{\bar{Y} - \mu_Y}{\sigma_Y/\sqrt{n}} < \frac{24.25 - \mu_Y}{\sigma_Y/\sqrt{n}} \right) = P(Z < -1.045) = .1492$$

Example 2. Same setup as the previous example. The computer calculates that

$$P(\bar{Y} > 24.36) = .2409.$$
Solution.

\[P(\bar{Y} > 24.36) = P(Z > \frac{24.36 - 24.32}{.067}) \]
\[= P(Z > \frac{24.36 - 24.32}{.067}) \]
\[= P(Z > .597) \]
\[= 1 - P(Z \leq .597) \]
\[= 1 - .7247 \]
\[= .275 \]

\[\square \]

Rule of Thumb: In most situations, the CLT can be used if \(n \geq 30 \). This is not a theoretical result but rather practical advice. Certainly there are cases where \(n \) must be much larger than 30 in order to trust the CLT.

Example 3. Suppose the number of minutes it takes you to bike to campus follows a normal distribution with \(\mu = 10 \) min and \(\sigma = 1.1 \) min. Find the probability that the total time spent biking to campus over a 5 day period exceeds 60 min.

Solution. Let \(Y_1, ..., Y_5 \) be the random variables giving the length of the ride for each of the 5 days. We need to find

\[P(Y_1 + ... + Y_5 > 60) = P\left(\frac{Y_1 + ... + Y_5}{5} > \frac{60}{5} \right) \]
\[= P(\bar{Y} > 12) \]
\[= P\left(\frac{\bar{Y} - 10}{1.1/\sqrt{5}} > \frac{12 - 10}{1.1/\sqrt{5}} \right) \]
\[= P(Z > 4.06) \]
\[= 0 \]

\[\square \]

Example 4. Find the probability that it takes more than 12 minutes to ride to campus on a given day.
Solution. Consider just day 1, or Y_1.

$$P(Y_1 > 12) = P\left(\frac{Y - 10}{1.1} > \frac{12 - 10}{1.1}\right)$$

$$= P\left(\frac{Y - 10}{1.1} > 1.8\right)$$

$$= P\left(Z > 1.8\right)$$

$$= P\left(Z < -1.8\right)$$

$$= .035$$

\[\square\]

Note 2. Averages are more “protected” than single observations against extreme behavior.

5.4: Normal Approximation to the Binomial

Setup: A binomial random variable Y takes the values $0, ..., n$ with probability of success p. Y is the number of successes in n trials.

Consider $\hat{p} = Y/n$. This new random variable can be viewed as the proportion of successes in n trials. We could think of

$$\hat{p} = \frac{W_1 + ... + W_n}{n}$$

if W_i were the random variable corresponding to success on the ith binomial trial, or following a binomial distribution with 1 trial and success probability p. In this way, \hat{p} is an average (think \bar{W}) and thus subject to the Central Limit Theorem.

We have the following two approximations

- $\hat{p} \sim N(p, \frac{\sqrt{p(1-p)}}{\sqrt{n}})$
- $Y \sim N(np, \sqrt{np(1-p)})$

Note 3 (Rule of Thumb). The normal approximation to the binomial is relatively trustworthy if

$$np \geq 5$$

and

$$n(1-p) \geq 5.$$

Example 5. Let Y be a binomial distribution with $n = 50$ and $p = .4$. Calculate $P(Y \leq 10)$ both according to the binomial probability distribution and the CLT approximation.
Solution. The exact binomial solution:

\[
P(Y \leq 10) = P(Y = 0) + P(Y = 1) + \ldots + P(Y = 10) \]
\[
= \binom{50}{0} p^0 (1 - p)^{50} + \binom{50}{1} p^1 (1 - p)^{49} + \ldots + \binom{50}{10} p^{10} (1 - p)^{40} = .002
\]

The CLT approximation:

\[
P(Y \leq 10) = P \left(\frac{Y - np}{\sqrt{np(1 - p)}} \leq \frac{10 - np}{\sqrt{np(1 - p)}} \right)
\]
\[
= P(Z \leq -2.88)
\]
\[
= .0019
\]