I made the R (Sweave) code available in http://www.stat.wisc.edu/~gvludwig/spring_2013/extra11.Rnw

Remember R is not a part of the course syllabus; I’ll explain some of the code objectives but don’t worry too much. Unless you want to learn R, in which case we can talk after class!

Exercise 11.2.23

This plot is illustrative of the model, but remember each of the cells in the given table contains the total compressive strength of that level, not the data itself.

```r
> cap1 <- c(1847, 1942, 1935, 1891, 1795)
> cap2 <- c(1779, 1850, 1795, 1785, 1626)
> cap3 <- c(1806, 1892, 1889, 1891, 1756)
> ylim <- c(min(c(cap1,cap2,cap3)), max(c(cap1,cap2,cap3)))
> plot(1:5, cap1, xlim=c(1,6), ylim=ylim, type="b",
+     xlab="Batch", ylab="Strength",
+     main="Compressive Strength (11.2.23)"
> lines(1:5, cap2, type="b", lty=2)
> lines(1:5, cap3, type="b", lty=3)
> text(5, cap1[5], pos=4, "Material 1")
> text(5, cap2[5], pos=4, "Material 2")
> text(5, cap3[5], pos=4, "Material 3")
```
Exercise 11.3.34

```r
> Store <- factor(rep(1:6, 6))
> Week <- factor(c(rep(1, 6), rep(2, 6), rep(3, 6),
+ rep(4, 6), rep(5, 6), rep(6, 6)))
> Shelf <- factor(c(5, 6, 2, 3, 4, 1, 4, 5, 6, 1, 3, 2, 3, 4, 5, 2, 1, 6,
+ 1, 3, 4, 6, 2, 5, 6, 2, 1, 4, 5, 3, 2, 1, 3, 5, 6, 4))
> Sales <- c(27, 34, 39, 40, 15, 16, 14, 31, 67, 57, 15, 15,
+ 18, 34, 31, 39, 11, 14, 35, 46, 49, 70, 9, 12,
+ 28, 37, 38, 37, 18, 19, 22, 23, 48, 50, 17, 22)
> # You can look at the data by calling each variable
> # name; I used the "cbind" (short for column-bind)
> # function to display it in a matrix form. Notice that
> # this is the way you want to input this data in R,
> # Excel, JMP and other statistical softwares too
> # (e.g. Minitab, SAS, SPSS) or MATLAB.
> #
> # The Latin Square visualization is only helpful
> # to summarize the data.
>>
> cbind(Store, Week, Shelf, Sales)

Store Week Shelf Sales
```

2
```r
> # Show the means per group
> 
> round(tapply(Sales, Store, mean), 2)

1 2 3 4 5 6
24.00 34.17 45.33 48.83 14.17 16.33

> round(tapply(Sales, Week, mean), 2)

1 2 3 4 5 6
28.50 33.17 24.50 36.83 29.50 30.33
```
> round(tapply(Sales, Shelf, mean), 2)

 1 2 3 4 5 6
30.00 26.83 31.00 28.50 28.17 38.33

> # R can, in fact, calculate the entire ANOVA table for you! I am
> # sure JMP also does calculate it for you.
>
> options(useFancyQuotes = FALSE)
> model <- lm(Sales ~ Store + Week + Shelf)
> anova(model)

Analysis of Variance Table

Response: Sales

 Df Sum Sq Mean Sq F value Pr(>F)
Store 5 6475.8 1295.16 20.2809 3.274e-07 ***
Week 5 529.5 105.89 1.6582 0.1908
Shelf 5 508.5 101.69 1.5924 0.2078
Residuals 20 1277.2 63.86

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1