DISCUSSION 4

Suppose the whole population is a mixture of three different subpopulations: African American, Asian, European with mixture proportions as 20 percent, 5 percent, and 75 percent. Also suppose that the divorce probability in African American is two times as high as in European; the divorce probability in Asian is one third as that in European. By randomly selecting 500 persons from the mixed population, 200 of them are divorced.

1. Let \(p \) be the divorced probability in mixed population and \(\beta \) the divorce probability in European population. Show that \(p = 1.17\beta \).

2. Write the formula for the likelihood of \(\beta \) using binomial formula. Calculate the likelihood and the log-likelihood of the divorce probability as 0.5 among Europeans (\(\beta = 0.5 \)).

3. Find the maximum likelihood of \(\beta \). This can be done in several steps.
 (a) Make a fine sequence of \(\beta \) from 0.05 to 0.85.
 (b) Evaluate the likelihood for each of these values. Plot the log-likelihood curve, the log-likelihood values versus the \(\beta \) values.
 (c) Find, the \(\beta \) value in your list that has the largest log-likelihood.

4. Use the likelihood ratio test to test the null hypothesis \(\beta = 0.5 \). Indicate the value of \(X^2 = 2(\log(\hat{\beta}) - \log(\beta_0)) \), the null distribution for this test, the p-value, and the final conclusion.

5. Determine the critical value \(C \) for the likelihood ratio test above, such that \(X^2 > C \) leads to a p-value \(p < 0.05 \).

6. Calculate the \(X^2 \) statistic for testing each \(\beta \) value in the list. Then determine a 95 percent confidence interval for \(\beta \) by finding the limits \((\beta_1, \beta_2) \) such that \(X^2 < C \) for all beta between \(\beta_1 \) and \(\beta_2 \) and \(X^2 > C \) otherwise.
Solution

beta=0.5
#p=1.17beta
#the value of likelihood
choose(500,200)*(1.17*beta)^200*(1-1.17*beta)^300
#try also
dbinom(200,500,1.17*beta)
#the value of log-likelihood
log(dbinom(200,500,1.17*beta))

#seqencing
beta=seq(0.05,0.85,by=0.001);beta

#define the likelihood function
lh.function=function(beta){dbinom(200,500,1.17*beta)}

#calculate the likelihood function at each beta in the sequence
lh.values=lh.function(beta);lh.values

plot(log(lh.values)~beta,type="l")

#find MLE
max(lh.values)
index=which(lh.values==max(lh.values))
beta.hat=beta[index];beta.hat

#log-likelihood statisitic
LR=2*(log(lh.function(beta.hat))-log(lh.function(0.5)));LR

#p-value
pchisq(LR,1,lower.tail=FALSE)

#critical value
C=qchisq(0.95,1);C

#find 95% C.I.
stat=2*(log(lh.function(beta.hat))-log(lh.function(beta))
w=which(stat<C)
betal=beta[min(w)];betal
beta2=beta[max(w)];beta2