1. a) First, compute the cumulative probabilities $P(X \leq k)$. This determines the range to simulate k.

<table>
<thead>
<tr>
<th>k</th>
<th>$P(X \leq k)$</th>
<th>range to simulate k</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>.12</td>
<td>[00,12]</td>
</tr>
<tr>
<td>1</td>
<td>.24</td>
<td>[12,24]</td>
</tr>
<tr>
<td>2</td>
<td>.84</td>
<td>[24,84]</td>
</tr>
<tr>
<td>3</td>
<td>1.00</td>
<td>[84,100]</td>
</tr>
</tbody>
</table>

The simulated values of X are thus 1, 3, 1, 2, 2, 1, 1, 3, 2 and there are 4 twos in this list, a little below the mathematical expectation, which is $np = 10 \times .6 = 6$.

1. b) (i) $E(3X - 2Y + Z) = 3E(X) - 2E(Y) + E(Z) = 6.0 - 2.4 + 1.6 = 5.2$
(ii) $Var(3X - 2Y + Z) = 9Var(X) + 4Var(Y) + Var(Z) = 9(.64) + 4(.04) + .16 = 6.08$.

$3X - 2Y + Z$ has a normal distribution with mean $\mu = 5.2$ and standard deviation $\sigma = \sqrt{6.08} = 2.5$, (rounded off to one decimal place, since the data were given to one decimal place).

2. a) For $0 < x < 1$, the marginal probability density function for X is

$$f_1(x) = \int_{y=0}^{y=2x} \frac{3}{4} (x + y) \, dy = \left. \frac{3}{4} (xy + \frac{y^2}{2}) \right|_{y=0}^{y=2x} = 3x^2$$

b) $P(Z < a) = .8664 + (1 - .8664)/2 = .9332$. From the Normal Tables, $a = 1.50$.

3. a) Work in units of 1000 miles throughout. The hypotheses to be tested are

$H_0 : \mu = 40$

$H_1 : \mu > 40$

The data yield sample mean $\bar{x} = 40.70$ and sample standard deviation $s = 2.48$ (after entering data in your calculator), and the test statistic is

$$t = \frac{\bar{x} - \mu_0}{s/\sqrt{n}} = \frac{40.7 - 40}{2.48/\sqrt{12}} = .977$$

The cutoff value is $t_{.05}$ at $\nu = n - 1 = 11$ degrees of freedom, which is 1.796 from Table 4.
Is \(.977 > 1.796 \)? No. Conclusion: accept \(H_0 \) and reject the manufacturer’s claim.

3. b) (i) Yes, because \(.042 \) is \(< .05 \).

(ii) \(2(.042) = .084 \) (diluted significance when alternative is two-sided)

(iii) small (the smaller the P-value of the sample, the stronger the evidence against the null hypothesis)

4. a) The hypotheses to be tested are

\[
H_0 : \sigma_1 = \sigma_2 \\
H_1 : \sigma_1 \neq \sigma_2
\]

The test statistic is

\[
F = \frac{S_{\text{big}}^2}{S_{\text{small}}^2} = \frac{.28}{.14} = 2
\]

and we reject \(H_0 \) if \(F > F_{\alpha/2} = F_{.05} \) at \(\nu_{\text{numerator}} = 11 \) and \(\nu_{\text{denominator}} = 9 \), which is 3.10. Since \(F \neq 3.10 \), we accept \(H_0 \) and conclude the variance of the yield is not affected by the catalyst.

b) Here \(X \) is the number of rolls till the first six appears, \(p = 1/6, E(X) = 6, \text{Var}(X) = 30 \). So \(\bar{X} \) has mean 6, standard deviation \(\sqrt{30/100} = .548 \) and, by CLT, \(\bar{X} \) is approx. normal. So

\[
P(\bar{X} > 6.5) = P\left(\frac{\bar{X} - 6}{.548} > \frac{6.5 - 6}{.548} \right) = P(Z > .91) = 1 - .8186 = .1814
\]

5. We need \(n \geq (z_{\alpha/2}/E)^2 p(1 - p) \). Knowing nothing about \(p \), we cater to the largest \(p(1 - p) \) can be, namely 1/4 (when \(p = 1/2 \)) and use \(n = (1.96/.02)^2(1/4) = 2401 \).

(Note: for \(E = .03 \), often used in practice, it turns out \(n = 1068 \))

(i) The parameter \(p \) is not a random variable—it either lies in the reported interval or it does not. So it is incorrect to speak of probabilities concerning \(p \).

(ii) The interval \(\hat{p} \pm z_{.025} \sqrt{\frac{\hat{p}(1 - \hat{p})}{n}} \) (its endpoints are random variables) is a random interval that contains (or covers) \(p \) with probability .95. If many such intervals were constructed (say by different polling organizations), on average 95 out of 100 of them would cover \(p \).