Cesàro's Integral Formula for the Bell Numbers (Corrected)

DAVID CALLAN
Department of Statistics
University of Wisconsin-Madison
Medical Science Center
1300 University Ave
Madison, WI 53706-1532
callan@stat.wisc.edu

October 3, 2005

In 1885, Cesàro [1] gave the remarkable formula

$$
N_{p}=\frac{2}{\pi e} \int_{0}^{\pi} e^{\left.e^{\cos \theta} \cos (\sin \theta)\right)} \sin \left(e^{\cos \theta} \sin (\sin \theta)\right) \sin p \theta d \theta
$$

where $\left(N_{p}\right)_{p \geq 1}=(1,2,5,15,52,203, \ldots)$ are the modern-day Bell numbers. This formula was reproduced verbatim in the Editorial Comment on a 1941 Monthly problem [2] (the notation N_{p} for Bell number was still in use then). I have not seen it in recent works and, while it's not very profound, I think it deserves to be better known.

Unfortunately, it contains a typographical error: a factor of $p!$ is omitted. The correct formula, with n in place of p and using B_{n} for Bell number, is

$$
B_{n}=\frac{2 n!}{\pi e} \int_{0}^{\pi} e^{\left.e^{\cos \theta} \cos (\sin \theta)\right)} \sin \left(e^{\cos \theta} \sin (\sin \theta)\right) \sin n \theta d \theta \quad n \geq 1
$$

The integrand is the imaginary part of $e^{e^{e^{i \theta}}} \sin n \theta$, and so an equivalent formula is

$$
\begin{equation*}
B_{n}=\frac{2 n!}{\pi e} \operatorname{Im}\left(\int_{0}^{\pi} e^{e^{i \theta}} \sin n \theta d \theta\right) . \tag{1}
\end{equation*}
$$

The formula (1) is quite simple to prove modulo a few standard facts about set partitions. Recall that the Stirling partition number $\left\{\begin{array}{l}n \\ k\end{array}\right\}$ is the number of partitions of $[n]=\{1,2, \ldots, n\}$ into k nonempty blocks and the Bell number $B_{n}=\sum_{k=1}^{n}\left\{\begin{array}{l}n \\ k\end{array}\right\}$ counts all partitions of $[n]$. Thus $k!\left\{\begin{array}{l}n \\ k\end{array}\right\}$ counts ordered partitions of $[n]$ into k blocks (the k ! factor serves to order the blocks) or, equivalently, counts surjective functions f from $[n]$
onto $[k]$ (the j th block is $f^{-1}(j)$). Since the number of unrestricted functions from $[n]$ to [j] is j^{n}, a classic application of the inclusion-exclusion principle yields

$$
k!\left\{\begin{array}{l}
n \tag{2}\\
k
\end{array}\right\}=\sum_{j=0}^{k}(-1)^{k-j}\binom{k}{j} j^{n} .
$$

The trig identity underlying Cesàro's formula is nothing more than the orthogonality of sines on $[0, \pi]$:

$$
\int_{0}^{\pi} \sin m \theta \sin n \theta d \theta= \begin{cases}\frac{\pi}{2} & \text { if } m=n \\ 0 & \text { if } m \neq n\end{cases}
$$

for m, n nonnegative integers. Using the Taylor expansion $e^{x}=\sum_{m \geq 0} \frac{x^{m}}{m!}$ and DeMoivre's formula $e^{i \theta}=\cos \theta+i \sin \theta$, it follows that

$$
\begin{equation*}
\operatorname{Im}\left(\int_{0}^{\pi} e^{j e^{i \theta}} \sin n \theta d \theta\right)=\frac{j^{n}}{n!} \frac{\pi}{2} \tag{3}
\end{equation*}
$$

for integer $j \geq 0$. Now we show that

$$
\operatorname{Im}\left(\int_{0}^{\pi} \frac{\left(e^{e^{i \theta}}-1\right)^{k}}{k!} \sin n \theta d \theta\right)=\frac{1}{n!}\left\{\begin{array}{l}
n \tag{4}\\
k
\end{array}\right\} \frac{\pi}{2}
$$

for integer $k \geq 0$ (of course, $\left\{\begin{array}{l}n \\ k\end{array}\right\}=0$ for $n>k=0$ and for $k>n$).
Proof The binomial theorem implies the left hand side is

$$
\begin{aligned}
& \frac{1}{k!} \sum_{j=0}^{k}(-1)^{k-j}\binom{k}{j} \operatorname{Im}\left(\int_{0}^{\pi} e^{j e^{i \theta}} \sin n \theta d \theta\right) \\
= & \frac{1}{k!} \sum_{j=0}^{k}(-1)^{k-j}\binom{k}{j} \frac{j^{n}}{n!} \frac{\pi}{2} \\
= & \frac{1}{n!}\left\{\begin{array}{l}
n \\
k
\end{array}\right\} \frac{\pi}{2}
\end{aligned}
$$

Finally, summing (4) over $k \geq 0$ yields Cesàro's formula (1). The Bell numbers have many other pretty representations, including Dobinski's infinite sum formula [3, p. 210]

$$
B_{n}=\frac{1}{e} \sum_{k=0}^{\infty} \frac{k^{n}}{k!}
$$

References

[1] M. E. Cesàro, Sur une équation aux différences mêlées, Nouvelles Annales de Math. (3), 4 (1885), 36-40.
[2] H. W. Becker and D. H. Browne, Problem E461 and solution, Amer. Math. Monthly 48 (1941), 701-703.
[3] L. Comtet, Advanced Combinatorics, D. Reidel, Boston, 1974.

AMS Classification numbers: 05A19, 05A15.

