Cesaro’s Integral Formula for the Bell Numbers (Corrected)
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In 1885, Cesaro [1] gave the remarkable formula
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where (N,)p>1 = (1,2,5,15,52,203,...) are the modern-day Bell numbers. This formula
was reproduced verbatim in the Editorial Comment on a 1941 Monthly problem [2] (the
notation N, for Bell number was still in use then). I have not seen it in recent works and,

while it’s not very profound, I think it deserves to be better known.

Unfortunately, it contains a typographical error: a factor of p! is omitted. The correct

formula, with n in place of p and using B,, for Bell number, is
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The integrand is the imaginary part of e sinnf, and so an equivalent formula is

2n! T
B, = M (/ " sinnd d@) : (1)
0

e

The formula (1) is quite simple to prove modulo a few standard facts about set par-
titions. Recall that the Stirling partition number {Z} is the number of partitions of
[n] = {1,2,...,n} into k nonempty blocks and the Bell number B, = >, {}} counts
all partitions of [n]. Thus k!{}} counts ordered partitions of [n] into k blocks (the k!

factor serves to order the blocks) or, equivalently, counts surjective functions f from [n]



onto [k] (the jth block is f71(4)). Since the number of unrestricted functions from [n] to

[7] is §™, a classic application of the inclusion-exclusion principle yields
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The trig identity underlying Cesaro’s formula is nothing more than the orthogonality
of sines on [0, 7]
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for m, n nonnegative integers. Using the Taylor expansion e = - and DeMoivre’s
9 m>0 m!

formula e? = cos@ + isiné, it follows that

Im (/0 ¢ sinnf d@) = ‘%g (3)

for integer j > 0. Now we show that
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for integer k > 0 (of course, {}} =0 for n >k =0 and for k > n).

Proof The binomial theorem implies the left hand side is
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Finally, summing (1) over k£ > 0 yields Cesaro’s formula (1). The Bell numbers have

many other pretty representations, including Dobinski’s infinite sum formula [3, p. 210]
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