Why is \(\frac{1}{n+1} \binom{2n}{n} = \frac{1}{2n+1} \binom{2n+1}{n} = \frac{1}{n} \binom{2n}{n-1} \)?

DAVID CALLAN
Department of Statistics
University of Wisconsin-Madison
1210 W. Dayton St
Madison, WI 53706-1693
callan@stat.wisc.edu

December 13, 2004

1. **Introduction** The Catalan number \(C_n \) is the cardinality (number of elements) of the set \(D_n \) of Dyck paths or “mountain ranges” of size \(n \)—the lattice paths of \(n \) upsteps and \(n \) downsteps that never dip below “ground level”. Writing an upstep as \(+1\) and a downstep as \(-1\), a Dyck path can be represented as a sequence of \(n \) 1’s and \(n - 1 \)’s whose partial sums are all nonnegative. We will review three methods of counting Dyck paths of size \(n \) leading, respectively, to the three expressions in the title (each of which is equal to \(C_n \)).

Each of the title expressions consists of a binomial coefficient \(b \) divided by a divisor \(d \). These divisors are \(n + 1 \), \(2n + 1 \) and \(n \) respectively. In each case there is a class \(\mathcal{L} \) of lattice paths whose cardinality is the binomial coefficient \(b \), and a way of coding these paths as sequences of length \(d \) with a special property: a code sequence cyclically rotated is again a valid code sequence. In each case, there is a parameter \(\nu \) defined on \(\mathcal{L} \) (equivalently, on its code sequences) with the following property: \(\nu \) has \(d \) possible values and on the \(d \) sequences obtained by cyclically rotating a given code sequence, \(\nu \) takes on each of its possible values exactly once. Thus \(\mathcal{L} \) is partitioned into \(\frac{b}{d} \) cyclic-rotation equivalence classes each of size \(d \). The sequences for which \(\nu \) has its maximum possible value are the Dyck paths of size \(n \) (first case) or are in a simple one-to-one correspondence with them (the other two cases). Thus there is one Dyck path per equivalence class and so \(|D_n| = b/d \), the quotient of the binomial coefficient and its divisor.

2. **Case** \(d = n + 1 \) Here \(\mathcal{L} (= \mathcal{L}_1) \) is the set of all \(\binom{2n}{n} \) lattice paths of \(n \) upsteps and \(n \) downsteps. For such a path, the \(n \) downsteps serve to separate \(n + 1 \) ascents each consisting of (zero or more) contiguous upsteps. The path is coded by the lengths of these ascents (see Figure 1).
$n = 4$, ascent length sequence $= (1, 0, 3, 0, 0)$, $\nu = 3$ upsteps above ground level

Figure 1

The parameter ν is the number of upsteps above the x-axis and ν ranges over $[0, n]$. The paths where ν has its maximal value n actually are the Dyck paths of size n.

3. Case $d = 2n + 1$ Here $\mathcal{L} (= \mathcal{L}_2)$ is the set of all $\binom{2n+1}{n}$ lattice paths of $n + 1$ upsteps and n downsteps. Here a path is coded simply by its sequence of ± 1’s. The parameter ν is the number of the path vertices strictly above the x-axis (or the number of positive partial sums of its ± 1 sequence, see Figure 2).

$$\pm 1 \text{ sequence } = (-1, 1, 1, -1, 1, 1, -1)$$
$$\text{partial sums } = (-1, 0, 1, 0, 1, 1, 1) \text{ with positive entries at positions } 3, 5, 6, 7$$
$$\nu = 4 \text{ vertices above ground level}$$

Figure 2

The terminal point is always above the x-axis, so ν ranges over $[1, 2n + 1]$. The paths with $\nu = 2n + 1$ correspond bijectively to Dyck paths of size n via: delete first step (necessarily an upstep).

4. Case $d = n$ Here $\mathcal{L} (= \mathcal{L}_3)$ is the set of all $\binom{2n}{n-1}$ lattice paths of $n + 1$ upsteps and $n - 1$ downsteps. Here a path is coded by by the lengths of its ascents as in the first case except now, with only $n - 1$ downsteps in a path, the code sequences are of length n The parameter ν is the number of upsteps above the line $y = 1$ and this time ν ranges over $[1, n]$. The paths with $\nu = n$ correspond bijectively to Dyck paths of size n via: flip the rightmost upstep between levels $y = 1$ and $y = 2$ (there must be one!) to a downstep.
To reverse this map, locate the last downstep that returns a Dyck path to the x-axis and flip it to an upstep (see Figure 3).

![Figure 3]

It is graphically obvious what a rotation does to a path in \mathcal{L}_2: just transfer the initial step to the end of the path. In \mathcal{L}_1 and \mathcal{L}_3, to rotate the code sequence of ascent lengths to the left, cut the path into 3 parts: the initial (possibly empty) ascent, the immediately following downstep, and a terminal segment. Then interchange the initial ascent and terminal segment.

5. **Proofs** In each case, the heart of the matter is showing that ν takes on different values on each of the d cyclic rotations of a code sequence. See [1] for a picture proof in case $d = 2n + 1$ that ν takes on its maximal value exactly once in each cyclic rotation class. (The same picture [1, p. 360] actually shows that ν takes on each of its possible values exactly once.) Exercise: devise similar proofs for the other cases. Note that the lattice paths considered terminate respectively at $y = 0$, $y = 1$ and $y = 2$ in the three cases.

6. **Historical Notes** Kai-Lai Chung and William Feller [2] proved in 1949 using generating functions that ν is uniformly distributed on \mathcal{L}_1 (lattice paths of n upsteps and n downsteps, or coin-tossing games that come out even). This is often referred to as the Chung-Feller theorem, but it was already known in 1908 to Major Percy A. MacMahon [3, p. 168, “a remarkable theorem”] who proved it using formal series (of words on an alphabet). Narayana [4] proved the full assertion for \mathcal{L}_1 in 1967. In 1947 Dvoretzky and Motzkin [5] showed ν takes on its maximum value just once in each rotation class in \mathcal{L}_2 (this is the basic Cycle Lemma), and I haven’t seen \mathcal{L}_3 in the literature. For further remarks and generalizations of the Cycle Lemma see [6].

7. **Final Remark** Of course, none of the three title expressions makes it immediately obvious that C_n is an integer. A fourth method of counting Dyck paths—the André reflection principle of 1887 [7, Chap. 3.1]—does so, expressing C_n as $\binom{2n}{n} - \binom{2n}{n-1}$. For
more on an automated method of expressing quantities like those in the title as integer linear combinations of binomial coefficients, see [8].

References

