Riordan Numbers Are Differences of Trinomial Coefficients

DAVID CALLAN
Department of Statistics
University of Wisconsin-Madison
Medical Science Center
1300 University Ave
Madison, WI 53706-1532
callan@stat.wisc.edu

September 25, 2006

The Riordan number R_n [A005043] is the number of Riordan paths of length n where a Riordan path is a Motzkin path [A001006] containing no flatsteps at ground level. Thus $R_4 = 3$ counts

The trinomial coefficient $t(n, k)$, $0 \leq k \leq n$ is the coefficient of x^k in $(x^{-1} + 1 + x)^n$, and $(t(n, 0))_{n \geq 0} = (1, 1, 3, 7, 19, 51, \ldots)$ is the central trinomial coefficient [A002426]. Clearly, $t(n, k)$ counts the set $\mathcal{T}(n, k)$ of lattice paths consisting of upsteps $U = (1, 1)$, flatsteps $F = (1, 0)$ and downsteps $D = (1, -1)$ such that the path (i) contains n steps, and (ii) ends k units above ground level, the horizontal line through its initial point. Thus $\mathcal{T}(n, 0)$ is the set of n-step balanced UFD-paths and a Motzkin path is a nonnegative balanced UFD-path.

Just as the Catalan number is the difference of a central binomial coefficient and its predecessor, the Riordan number is the difference of a central trinomial coefficient and its predecessor:

Theorem. $R_n = t(n, 0) - t(n, -1)$.

Since the set \mathcal{R}_n of paths counted by R_n is a subset of $\mathcal{T}(n, 0)$, it suffices to give a bijection from $\mathcal{T}(n, 0) \setminus \mathcal{R}_n$ to $\mathcal{T}(n, -1)$, that is, to the n-step UFD-paths that end 1 unit below ground level. So suppose given a balanced UFD-path of length n that either has
at least one F at ground level or dips below ground level at some point (or both). If the path ends with a U or F, rotate this step 45°, that is, $U \to F$, $F \to D$. This produces, in reversible fashion, all paths in $\mathcal{T}(n,-1)$ that end F or D. If the given path ends with a D, however, consider its first step and, if it is U, let R denote the longest Riordan subpath that terminates the given path. Note that R is necessarily nonempty and not the entire path. Also, the step immediately preceding R in the given path cannot be D (this would violate the maximality of R). Thus, in case it ends D, the given path has one of the following four mutually exclusive forms (P a UFD-subpath), and they are mapped as indicated:

\[
\begin{align*}
DPD & \rightarrow F\overline{P}U \\
FPD & \rightarrow D\overline{P}U \\
UPFR & \rightarrow UPD\overline{R} \\
UPUR & \rightarrow UPF\overline{R}
\end{align*}
\]

Here, \overline{P} is the result of flipping P across a horizontal line. An example for the last form is illustrated.

We leave to the reader the easy verification that this map is invertible and therefore is the desired bijection.