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Web sites associated with the workshop

www.stat.wisc.edu/∼bates/PotsdamGLMM Materials for the
course

www.R-project.org Main web site for the R Project

cran.R-project.org Comprehensive R Archive Network primary site

cran.us.R-project.org Main U.S. mirror for CRAN

cran.R-project.org/web/views/Psychometrics.html Psychometrics
task view within CRAN

R-forge.R-project.org R-Forge, development site for many public R
packages. This is also the URL of the repository for
installing the development versions of the lme4 and
Matrix packages, if you are so inclined.

lme4.R-forge.R-project.org development site for the lme4 package



Simple Longitudinal Singular Non-nested Interactions Theory

Outline

Organizing and plotting data; simple, scalar random effects

Models for longitudinal data

Singular variance-covariance matrices

Unbalanced, non-nested data sets

Interactions of grouping factors and other covariates

Evaluating the log-likelihood



Simple Longitudinal Singular Non-nested Interactions Theory

Organizing data in R

• Standard rectangular data sets (columns are variables, rows
are observations) are stored in R as data frames.

• The columns can be numeric variables (e.g. measurements or
counts) or factor variables (categorical data) or ordered factor
variables. These types are called the class of the variable.

• The str function provides a concise description of the
structure of a data set (or any other class of object in R). The
summary function summarizes each variable according to its
class. Both are highly recommended for routine use.

• Entering just the name of the data frame causes it to be
printed. For large data frames use the head and tail

functions to view the first few or last few rows.
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R packages

• Packages incorporate functions, data and documentation.

• You can produce packages for private or in-house use or you
can contribute your package to the Comprehensive R Archive
Network (CRAN), http://cran.us.R-project.org

• We will be using the lme4 package from CRAN. Install it from
the Packages menu item or with
> install.packages("lme4")

• You only need to install a package once. If a new version
becomes available you can update (see the menu item).

• To use a package in an R session you attach it using
> require(lme4)

or
> library(lme4)

(This usage causes widespread confusion of the terms
“package” and “library”.)

http://cran.us.R-project.org
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Accessing documentation

• To be added to CRAN, a package must pass a series of quality
control checks. In particular, all functions and data sets must
be documented. Examples and tests can also be included.

• The data function provides names and brief descriptions of
the data sets in a package.
> data(package = "lme4")

Data sets in package ’lme4’:

Dyestuff Yield of dyestuff by batch

Dyestuff2 Yield of dyestuff by batch

Pastes Paste strength by batch and cask

Penicillin Variation in penicillin testing

cake Breakage angle of chocolate cakes

cbpp Contagious bovine pleuropneumonia

sleepstudy Reaction times in a sleep deprivation study

• Use ? followed by the name of a function or data set to view
its documentation. If the documentation contains an example
section, you can execute it with the example function.
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Lattice graphics

• One of the strengths of R is its graphics capabilities.

• There are several styles of graphics in R. The style in
Deepayan Sarkar’s lattice package is well-suited to the type of
data we will be discussing.

• I will not show every piece of code used to produce the data
graphics. The code is available in the script files for the slides
(and sometimes in the example sections of the data set’s
documentation).

• Deepayan’s book, Lattice: Multivariate Data Visualization
with R (Springer, 2008) provides in-depth documentation and
explanations of lattice graphics.

• I also recommend Phil Spector’s book, Data Manipulation
with R (Springer, 2008).



Simple Longitudinal Singular Non-nested Interactions Theory

The Dyestuff data set
• The Dyestuff, Penicillin and Pastes data sets all come

from the classic book Statistical Methods in Research and
Production, edited by O.L. Davies and first published in 1947.

• The Dyestuff data are a balanced one-way classification of
the Yield of dyestuff from samples produced from six Batches
of an intermediate product. See ?Dyestuff.

> str(Dyestuff)

’data.frame’: 30 obs. of 2 variables:

$ Batch: Factor w/ 6 levels "A","B","C","D",..: 1 1 1 1 1 2 2 2 2 2 ...

$ Yield: num 1545 1440 1440 1520 1580 ...

> summary(Dyestuff)

Batch Yield

A:5 Min. :1440

B:5 1st Qu.:1469

C:5 Median :1530

D:5 Mean :1528

E:5 3rd Qu.:1575

F:5 Max. :1635
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The effect of the batches

• To emphasize that Batch is categorical, we use letters instead
of numbers to designate the levels.

• Because there is no inherent ordering of the levels of Batch,
we will reorder the levels if, say, doing so can make a plot
more informative.

• The particular batches observed are just a selection of the
possible batches and are entirely used up during the course of
the experiment.

• It is not particularly important to estimate and compare yields
from these batches. Instead we wish to estimate the
variability in yields due to batch-to-batch variability.

• The Batch factor will be used in random-effects terms in
models that we fit.
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Dyestuff data plot

Yield of dyestuff (grams of standard color)
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• The line joins the mean yields of the six batches, which have
been reordered by increasing mean yield.

• The vertical positions are jittered slightly to reduce
overplotting. The lowest yield for batch A was observed on
two distinct preparations from that batch.
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A mixed-effects model for the dyestuff yield
> fm1 <- lmer(Yield ~ 1 + (1 | Batch), Dyestuff)
> print(fm1)

Linear mixed model fit by REML

Formula: Yield ~ 1 + (1 | Batch)

Data: Dyestuff

AIC BIC logLik deviance REMLdev

325.7 329.9 -159.8 327.4 319.7

Random effects:

Groups Name Variance Std.Dev.

Batch (Intercept) 1763.7 41.996

Residual 2451.3 49.511

Number of obs: 30, groups: Batch, 6

Fixed effects:

Estimate Std. Error t value

(Intercept) 1527.50 19.38 78.81

• Fitted model fm1 has one fixed-effect parameter, the mean
yield, and one random-effects term, generating a simple,
scalar random effect for each level of Batch.
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Extracting information from the fitted model

• fm1 is an object of class "mer" (mixed-effects representation).

• There are many extractor functions that can be applied to
such objects.

> fixef(fm1)

(Intercept)

1527.5

> ranef(fm1, drop = TRUE)

$Batch

A B C D E F

-17.60597 0.39124 28.56079 -23.08338 56.73033 -44.99302

> fitted(fm1)

[1] 1509.9 1509.9 1509.9 1509.9 1509.9 1527.9 1527.9 1527.9

[9] 1527.9 1527.9 1556.1 1556.1 1556.1 1556.1 1556.1 1504.4

[17] 1504.4 1504.4 1504.4 1504.4 1584.2 1584.2 1584.2 1584.2

[25] 1584.2 1482.5 1482.5 1482.5 1482.5 1482.5
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Definition of linear mixed-effects models

• A mixed-effects model incorporates two vector-valued random
variables: the response, Y , and the random effects, B. We
observe the value, y, of Y . We do not observe the value of B.

• In a linear mixed-effects model the conditional distribution,
Y |B, and the marginal distribution, B, are independent,
multivariate normal (or “Gaussian”) distributions,

(Y |B = b) ∼ N
(
Xβ + Zb, σ2I

)
, B ∼ N

(
0, σ2Σ

)
, (Y |B) ⊥ B.

• The scalar σ is the common scale parameter; the
p-dimensional β is the fixed-effects parameter; the n× p X
and the n× q Z are known, fixed model matrices; and the
q × q relative variance-covariance matrix Σ(θ) is a positive
semidefinite, symmetric q × q matrix that depends on the
parameter θ.
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Conditional modes of the random effects

• Technically we do not provide “estimates” of the random
effects because they are not parameters.

• One answer to the question, “so what are those numbers
anyway?” is that they are BLUPs (Best Linear Unbiased
Predictors) but that answer is not informative and the concept
does not generalize.

• A better answer is that those values are the conditional
means, E[B|Y = y], evaluated at the estimated parameters.
Regrettably, we can only evaluate the conditional means for
linear mixed models.

• However, these values are also the conditional modes and that
concept does generalize to other types of mixed models.
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Caterpillar plot for fm1

• For linear mixed models we can evaluate the means and
standard deviations of the conditional distributions
Bj |Y , j = 1, . . . , q. We show these in the form of a 95%
prediction interval, with the levels of the grouping factor
arranged in increasing order of the conditional mean.

• These are sometimes called “caterpillar plots”.
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Mixed-effects model formulas

• In lmer the model is specified by the formula argument. As in
most R model-fitting functions, this is the first argument.

• The model formula consists of two expressions separated by
the ∼ symbol.

• The expression on the left, typically the name of a variable, is
evaluated as the response.

• The right-hand side consists of one or more terms separated
by ‘+’ symbols.

• A random-effects term consists of two expressions separated
by the vertical bar, (‘|’), symbol (read as “given” or “by”).
Typically, such terms are enclosed in parentheses.

• The expression on the right of the ‘|’ is evaluated as a factor,
which we call the grouping factor for that term.
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Simple, scalar random-effects terms

• In a simple, scalar random-effects term, the expression on the
left of the ‘|’ is ‘1’. Such a term generates one random effect
(i.e. a scalar) for each level of the grouping factor.

• Each random-effects term contributes a set of columns to Z.
For a simple, scalar r.e. term these are the indicator columns
for the levels of the grouping factor. The transpose of the
Batch indicators is

> with(Dyestuff, as(Batch, "sparseMatrix"))

6 x 30 sparse Matrix of class "dgCMatrix"

A 1 1 1 1 1 . . . . . . . . . . . . . . . . . . . . . . . . .

B . . . . . 1 1 1 1 1 . . . . . . . . . . . . . . . . . . . .

C . . . . . . . . . . 1 1 1 1 1 . . . . . . . . . . . . . . .

D . . . . . . . . . . . . . . . 1 1 1 1 1 . . . . . . . . . .

E . . . . . . . . . . . . . . . . . . . . 1 1 1 1 1 . . . . .

F . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 1 1 1
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Formulation of the marginal variance matrix

• In addition to determining Z, the random effects terms
determine the form and parameterization of the relative
variance-covariance matrix, Σ(θ).

• The parameterization is based on a modified “LDL′” Cholesky
factorization

Σ = TSS′T ′

where T is a q × q unit lower Triangular matrix and S is a
q × q diagonal Scale matrix with nonnegative diagonal
elements.

• Σ, T and S are all block-diagonal, with blocks corresponding
to the random-effects terms.

• The diagonal block of T for a scalar random effects term is
the identity matrix, I, and the block in S is a nonnegative
multiple of I.
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Verbose fitting, extracting T and S

• The optional argument verbose = TRUE causes lmer to print
iteration information during the optimzation of the parameter
estimates.

• The quantity being minimized is the profiled deviance of the
model. The deviance is negative twice the log-likelihood. It is
profiled in the sense that it is a function of θ only — β and σ
are at their conditional estimates.

• If you want to see exactly how the parameters θ generate Σ,
use expand to obtain a list with components sigma, T and S.
The list also contains a permutation matrix P whose role we
will discuss later.

• T , S and Σ can be very large but are always highly patterned.
The image function can be used to examine their structure.
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Obtain the verbose output for fitting fm1

> invisible(update(fm1, verbose = TRUE))

0: 319.76562: 0.730297

1: 319.73553: 0.962418

2: 319.65736: 0.869480

3: 319.65441: 0.844020

4: 319.65428: 0.848469

5: 319.65428: 0.848327

6: 319.65428: 0.848324

• The first number on each line is the iteration count —
iteration 0 is at the starting value for θ.

• The second number is the profiled deviance — the criterion to
be minimized at the estimates.

• The third and subsequent numbers are the parameter vector θ.
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Extract T and S
• As previously indicated, T and S from fm1 are boring.

> efm1 <- expand(fm1)
> efm1$S

6 x 6 diagonal matrix of class "ddiMatrix"

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0.84823 . . . . .

[2,] . 0.84823 . . . .

[3,] . . 0.84823 . . .

[4,] . . . 0.84823 . .

[5,] . . . . 0.84823 .

[6,] . . . . . 0.84823

> efm1$T

6 x 6 sparse Matrix of class "dtCMatrix"

[1,] 1 . . . . .

[2,] . 1 . . . .

[3,] . . 1 . . .

[4,] . . . 1 . .

[5,] . . . . 1 .

[6,] . . . . . 1
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Reconstructing Σ

> (fm1S <- tcrossprod(efm1$T %*% efm1$S))

6 x 6 sparse Matrix of class "dsCMatrix"

[1,] 0.71949 . . . . .

[2,] . 0.71949 . . . .

[3,] . . 0.71949 . . .

[4,] . . . 0.71949 . .

[5,] . . . . 0.71949 .

[6,] . . . . . 0.71949
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REML estimates versus ML estimates

• The default parameter estimation criterion for linear mixed
models is restricted (or “residual”) maximum likelihood
(REML).

• Maximum likelihood (ML) estimates (sometimes called “full
maximum likelihood”) can be requested by specifying REML =

FALSE in the call to lmer.

• Generally REML estimates of variance components are
preferred. ML estimates are known to be biased. Although
REML estimates are not guaranteed to be unbiased, they are
usually less biased than ML estimates.

• Roughly the difference between REML and ML estimates of
variance components is comparable to estimating σ2 in a
fixed-effects regression by SSR/(n− p) versus SSR/n, where
SSR is the residual sum of squares.

• For a balanced, one-way classification like the Dyestuff data,
the REML and ML estimates of the fixed-effects are identical.
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Re-fitting the model for ML estimates

> (fm1M <- update(fm1, REML = FALSE))

Linear mixed model fit by maximum likelihood

Formula: Yield ~ 1 + (1 | Batch)

Data: Dyestuff

AIC BIC logLik deviance REMLdev

333.3 337.5 -163.7 327.3 319.7

Random effects:

Groups Name Variance Std.Dev.

Batch (Intercept) 1388.1 37.258

Residual 2451.3 49.511

Number of obs: 30, groups: Batch, 6

Fixed effects:

Estimate Std. Error t value

(Intercept) 1527.50 17.69 86.33

(The extra parentheses around the assignment cause the value to
be printed. Generally the results of assignments are not printed.)
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Recap of the Dyestuff model

• The model is fit as
lmer(formula = Yield ~ 1 + (1 | Batch), data = Dyestuff)

• There is one random-effects term, (1|Batch), in the model
formula. It is a simple, scalar term for the grouping factor
Batch with n1 = 6 levels. Thus q = 6.

• The model matrix Z is the 30× 6 matrix of indicators of the
levels of Batch.

• The relative variance-covariance matrix, Σ, is a nonnegative
multiple of the 6× 6 identity matrix I6.

• The fixed-effects parameter vector, β, is of length p = 1. All
the elements of the 30× 1 model matrix X are unity.
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The Penicillin data (see also the ?Penicillin description)
> str(Penicillin)

’data.frame’: 144 obs. of 3 variables:

$ diameter: num 27 23 26 23 23 21 27 23 26 23 ...

$ plate : Factor w/ 24 levels "a","b","c","d",..: 1 1 1 1 1 1 2 2 2 2 ...

$ sample : Factor w/ 6 levels "A","B","C","D",..: 1 2 3 4 5 6 1 2 3 4 ...

> xtabs(~sample + plate, Penicillin)

plate

sample a b c d e f g h i j k l m n o p q r s t u v w x

A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

B 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

C 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

D 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

E 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

F 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

• These are measurements of the potency (measured by the
diameter of a clear area on a Petri dish) of penicillin samples
in a balanced, unreplicated two-way crossed classification with
the test medium, plate.
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Penicillin data plot

Diameter of growth inhibition zone (mm)
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Model with crossed simple random effects for Penicillin

> (fm2 <- lmer(diameter ~ 1 + (1 | plate) + (1 | sample),
+ Penicillin))

Linear mixed model fit by REML

Formula: diameter ~ 1 + (1 | plate) + (1 | sample)

Data: Penicillin

AIC BIC logLik deviance REMLdev

338.9 350.7 -165.4 332.3 330.9

Random effects:

Groups Name Variance Std.Dev.

plate (Intercept) 0.71691 0.84671

sample (Intercept) 3.73030 1.93140

Residual 0.30242 0.54992

Number of obs: 144, groups: plate, 24; sample, 6

Fixed effects:

Estimate Std. Error t value

(Intercept) 22.9722 0.8085 28.41
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Fixed and random effects for fm2
• The model for the n = 144 observations has p = 1

fixed-effects parameter and q = 30 random effects from k = 2
random effects terms in the formula.

> fixef(fm2)

(Intercept)

22.972

> ranef(fm2, drop = TRUE)

$plate

a b c d e f

0.804547 0.804547 0.181672 0.337391 0.025953 -0.441203

g h i j k l

-1.375516 0.804547 -0.752641 -0.752641 0.960266 0.493109

m n o p q r

1.427422 0.493109 0.960266 0.025953 -0.285484 -0.285484

s t u v w x

-1.375516 0.960266 -0.908360 -0.285484 -0.596922 -1.219797

$sample

A B C D E F

2.187057 -1.010476 1.937898 -0.096895 -0.013842 -3.003742
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Prediction intervals for random effects
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Model matrix Z for fm2

• Because the model matrix Z is generated from k = 2 simple,
scalar random effects terms, it consists of two sets of indicator
columns.

• The structure of Z ′ is shown below. (Generally we will show
the transpose of these model matrices - they fit better on
slides.)
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Models with crossed random effects

• Many people believe that mixed-effects models are equivalent
to hierarchical linear models (HLMs) or “multilevel models”.
This is not true. The plate and sample factors in fm2 are
crossed. They do not represent levels in a hierarchy.

• There is no difficulty in defining and fitting models with
crossed random effects (meaning random-effects terms whose
grouping factors are crossed). However, fitting models with
crossed random effects can be somewhat slower.

• The crucial calculation in each lmer iteration is evaluation of
the sparse, lower triangular, Cholesky factor, L(θ), that
satisfies

L(θ)L(θ)′ = P (A(θ)A(θ)′ + Iq)P ′

from A(θ)′ = ZT (θ)S(θ). Crossing of grouping factors
increases the number of nonzeros in AA′ and also causes
some “fill-in” when creating L from A.
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All HLMs are mixed models but not vice-versa
• Even though Raudenbush and Bryk (2002) do discuss models

for crossed factors in their HLM book, such models are not
hierarchical.

• Experimental situations with crossed random factors, such as
“subject” and “stimulus”, are common. We can, and should
model, such data according to its structure.

• In longitudinal studies of subjects in social contexts (e.g.
students in classrooms or in schools) we almost always have
partial crossing of the subject and the context factors,
meaning that, over the course of the study, a particular
student may be observed in more than one class (partial
crossing) but not all students are observed in all classes. The
student and class factors are neither fully crossed nor strictly
nested.

• For longitudinal data, “nested” is only important if it means
“nested across time”. “Nested at a particular time” doesn’t
count.

• The lme4 package in R is different from most other software
for fitting mixed models in that it handles fully crossed and
partially crossed random effects gracefully.
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Images of some of the q × q matrices for fm2

• Because both random-effects terms are scalar terms, T is a
block-diagonal matrix of two blocks, both of which are
identity matrices. Hence T = Iq.

• For this model it is also the case that P = Iq.

• S consists of two diagonal blocks, both of which are multiples
of an identity matrix. The multiples are different.
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Recap of the Penicillin model

• The model formula is
diameter ~ 1 + (1 | plate) + (1 | sample)

• There are two random-effects terms, (1|plate) and
(1|sample). Both are simple, scalar (q1 = q2 = 1) random
effects terms, with n1 = 24 and n2 = 6 levels, respectively.
Thus q = q1n1 + q2n2 = 30.

• The model matrix Z is the 144× 30 matrix created from two
sets of indicator columns.

• The relative variance-covariance matrix, Σ, is block diagonal
in two blocks that are nonnegative multiples of identity
matrices. The matrices AA′ and L show the crossing of the
factors. L has some fill-in relative to AA′.

• The fixed-effects parameter vector, β, is of length p = 1. All
the elements of the 144× 1 model matrix X are unity.
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The Pastes data (see also the ?Pastes description)

> str(Pastes)

’data.frame’: 60 obs. of 4 variables:

$ strength: num 62.8 62.6 60.1 62.3 62.7 63.1 60 61.4 57.5 56.9 ...

$ batch : Factor w/ 10 levels "A","B","C","D",..: 1 1 1 1 1 1 2 2 2 2 ...

$ cask : Factor w/ 3 levels "a","b","c": 1 1 2 2 3 3 1 1 2 2 ...

$ sample : Factor w/ 30 levels "A:a","A:b","A:c",..: 1 1 2 2 3 3 4 4 5 5 ...

> xtabs(~batch + sample, Pastes, sparse = TRUE)

10 x 30 sparse Matrix of class "dgCMatrix"

A 2 2 2 . . . . . . . . . . . . . . . . . . . . . . . . . . .

B . . . 2 2 2 . . . . . . . . . . . . . . . . . . . . . . . .

C . . . . . . 2 2 2 . . . . . . . . . . . . . . . . . . . . .

D . . . . . . . . . 2 2 2 . . . . . . . . . . . . . . . . . .

E . . . . . . . . . . . . 2 2 2 . . . . . . . . . . . . . . .

F . . . . . . . . . . . . . . . 2 2 2 . . . . . . . . . . . .

G . . . . . . . . . . . . . . . . . . 2 2 2 . . . . . . . . .

H . . . . . . . . . . . . . . . . . . . . . 2 2 2 . . . . . .

I . . . . . . . . . . . . . . . . . . . . . . . . 2 2 2 . . .

J . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 2
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Structure of the Pastes data

• The sample factor is nested within the batch factor. Each
sample is from one of three casks selected from a particular
batch.

• Note that there are 30, not 3, distinct samples.

• We can label the casks as ‘a’, ‘b’ and ‘c’ but then the cask

factor by itself is meaningless (because cask ‘a’ in batch ‘A’ is
unrelated to cask ‘a’in batches ‘B’, ‘C’, . . . ). The cask factor
is only meaningful within a batch.

• Only the batch and cask factors, which are apparently
crossed, were present in the original data set. cask may be
described as being nested within batch but that is not
reflected in the data. It is implicitly nested, not explicitly
nested.

• You can save yourself a lot of grief by immediately creating
the explicitly nested factor. The recipe is

> Pastes <- within(Pastes, sample <- (batch:cask)[drop = TRUE])
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Avoid implicitly nested representations

• The lme4 package allows for very general model specifications.
It does not require that factors associated with random effects
be hierarchical or “multilevel” factors in the design.

• The same model specification can be used for data with
nested or crossed or partially crossed factors. Nesting or
crossing is determined from the structure of the factors in the
data, not the model specification.

• You can avoid confusion about nested and crossed factors by
following one simple rule: ensure that different levels of a
factor in the experiment correspond to different labels of the
factor in the data.

• Samples were drawn from 30, not 3, distinct casks in this
experiment. We should specify models using the sample factor
with 30 levels, not the cask factor with 3 levels.
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Pastes data plot
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A model with nested random effects

> (fm3 <- lmer(strength ~ 1 + (1 | batch) + (1 | sample),
+ Pastes))

Linear mixed model fit by REML

Formula: strength ~ 1 + (1 | batch) + (1 | sample)

Data: Pastes

AIC BIC logLik deviance REMLdev

255 263.4 -123.5 248.0 247

Random effects:

Groups Name Variance Std.Dev.

sample (Intercept) 8.43378 2.90410

batch (Intercept) 1.65691 1.28721

Residual 0.67801 0.82341

Number of obs: 60, groups: sample, 30; batch, 10

Fixed effects:

Estimate Std. Error t value

(Intercept) 60.0533 0.6768 88.73



Simple Longitudinal Singular Non-nested Interactions Theory

Random effects from model fm3
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Dimensions and relationships in fm3

• There are n = 60 observations, p = 1 fixed-effects parameter,
k = 2 simple, scalar random-effects terms (q1 = q2 = 1) with
grouping factors having n1 = 30 and n2 = 10 levels.

• Because both random-effects terms are scalar terms, T = I40

and S is block-diagonal in two diagonal blocks of sizes 30 and
10, respectively. Z is generated from two sets of indicators.
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Images of some of the q × q matrices for fm3

• The permutation P has two purposes: reduce fill-in and
“post-order” the columns to keep nonzeros near the diagonal.

• In a model with strictly nested grouping factors there will be
no fill-in. The permutation P is chosen for post-ordering only.
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Eliminate the random-effects term for batch?

• We have seen that there is little batch-to-batch variability
beyond that induced by the variability of samples within
batches.

• We can fit a reduced model without that term and compare it
to the original model.

• Somewhat confusingly, model comparisons from likelihood
ratio tests are obtained by calling the anova function on the
two models. (Put the simpler model first in the call to anova.)

• Sometimes likelihood ratio tests can be evaluated using the
REML criterion and sometimes they can’t. Instead of learning
the rules of when you can and when you can’t, it is easiest
always to refit the models with REML = FALSE before
comparing.
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Comparing ML fits of the full and reduced models

> fm3M <- update(fm3, REML = FALSE)
> fm4M <- lmer(strength ~ 1 + (1 | sample), Pastes,
+ REML = FALSE)
> anova(fm4M, fm3M)

Data: Pastes

Models:

fm4M: strength ~ 1 + (1 | sample)

fm3M: strength ~ 1 + (1 | batch) + (1 | sample)

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)

fm4M 3 254.40 260.69 -124.20

fm3M 4 255.99 264.37 -124.00 0.4072 1 0.5234
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p-values of LR tests on variance components

• The likelihood ratio is a reasonable criterion for comparing
these two models. However, the theory behind using a χ2

distribution with 1 degree of freedom as a reference
distribution for this test statistic does not apply in this case.
The null hypothesis is on the boundary of region of the
parameter space.

• Even at the best of times, the p-values for such tests are only
approximate because they are based on the asymptotic
behavior of the test statistic. To carry the argument further,
all results in statistics are based on models and, as George
Box famously said, “All models are wrong; some models are
useful.”
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LR tests on variance components (cont’d)

• In this case the problem with the boundary condition results
in a p-value that is larger than it would be if, say, you
compared this likelihood ratio to values obtained for data
simulated from the null hypothesis model. We say these
results are “conservative”.

• As a rule of thumb, the p-value for a simple, scalar term is
roughly twice as large as it should be.

• In this case, dividing the p-value in half would not affect our
conclusion.
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Updated model, REML estimates

> (fm4 <- update(fm4M, REML = TRUE))

Linear mixed model fit by REML

Formula: strength ~ 1 + (1 | sample)

Data: Pastes

AIC BIC logLik deviance REMLdev

253.6 259.9 -123.8 248.4 247.6

Random effects:

Groups Name Variance Std.Dev.

sample (Intercept) 9.97622 3.15852

Residual 0.67803 0.82342

Number of obs: 60, groups: sample, 30

Fixed effects:

Estimate Std. Error t value

(Intercept) 60.0533 0.5864 102.4
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Recap of the analysis of the Pastes data

• The data consist of n = 60 observations on q1 = 30 samples
nested within q2 = 10 batches.

• The data are labelled with a cask factor with 3 levels but that
is an implicitly nested factor. Create the explicit factor sample
and ignore cask from then on.

• Specification of a model for nested factors is exactly the same
as specification of a model with crossed or partially crossed
factors — provided that you avoid using implicitly nested
factors.

• In this case the batch factor was inert — it did not “explain”
substantial variability in addition to that attributed to the
sample factor. We therefore prefer the simpler model.

• At the risk of “beating a dead horse”, notice that, if we had
used the cask factor in some way, we would still need to
create a factor like sample to be able to reduce the model.
The cask factor is only meaningful within batch.
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Recap of simple, scalar random-effects terms

• For the lmer function (and also for glmer and nlmer) a
simple, scalar random effects term is of the form (1|F).

• The number of random effects generated by the ith such term
is the number of levels, ni, of F (after dropping “unused”
levels — those that do not occur in the data. The idea of
having such levels is not as peculiar as it may seem if, say, you
are fitting a model to a subset of the original data.)

• Such a term contributes ni columns to Z. These columns are
the indicator columns of the grouping factor.

• Such a term contributes a diagonal block Ini to T . If all
random effects terms are scalar terms then T = I.

• Such a term contributes a diagonal block ciIni to S. The
multipliers ci can be different for different terms. The term
contributes exactly one element (which is ci) to θ.
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This is all very nice, but . . .
• These methods are interesting but the results are not really

new. Similar results are quoted in Statistical Methods in
Research and Production, which is a very old book.

• The approach described in that book is actually quite
sophisticated, especially when you consider that the methods
described there, based on observed and expected mean
squares, are for hand calculation (in pre-calculator days)!

• Why go to all the trouble of working with sparse matrices and
all that if you could get the same results with paper and
pencil? The one-word answer is balance.

• Those methods depend on the data being balanced. The
design must be completely balanced and the resulting data
must also be completely balanced.

• Balance is fragile. Even if the design is balanced, a single
missing or questionable observation destroys the balance.
Observational studies (as opposed to, say, laboratory
experiments) cannot be expected to yield balanced data sets.

• Also, the models involve only simple, scalar random effects
and do not incorporate covariates.
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A large observational data set

• A major university (not mine) provided data on the grade
point score (gr.pt) by student (id), instructor (instr) and
department (dept) from a 10 year period. I regret that I
cannot make these data available to others.

• These factors are unbalanced and partially crossed.

> str(anon.grades.df)

’data.frame’: 1721024 obs. of 9 variables:

$ instr : Factor w/ 7964 levels "10000","10001",..: 1 1 1 1 1 1 1 1 1 1 ...

$ dept : Factor w/ 106 levels "AERO","AFAM",..: 43 43 43 43 43 43 43 43 43 43 ...

$ id : Factor w/ 54711 levels "900000001","900000002",..: 12152 1405 23882 18875 18294 20922 4150 13540 5499 6425 ...

$ nclass : num 40 29 33 13 47 49 37 14 21 20 ...

$ vgpa : num NA NA NA NA NA NA NA NA NA NA ...

$ rawai : num 2.88 -1.15 -0.08 -1.94 3.00 ...

$ gr.pt : num 4 1.7 2 0 3.7 1.7 2 4 2 2.7 ...

$ section : Factor w/ 70366 levels "19959 AERO011A001",..: 18417 18417 18417 18417 9428 18417 18417 9428 9428 9428 ...

$ semester: num 19989 19989 19989 19989 19972 ...
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A preliminary model

Linear mixed model fit by REML

Formula: gr.pt ~ (1 | id) + (1 | instr) + (1 | dept)

Data: anon.grades.df

AIC BIC logLik deviance REMLdev

3447389 3447451 -1723690 3447374 3447379

Random effects:

Groups Name Variance Std.Dev.

id (Intercept) 0.3085 0.555

instr (Intercept) 0.0795 0.282

dept (Intercept) 0.0909 0.301

Residual 0.4037 0.635

Number of obs: 1685394, groups: id, 54711; instr, 7915; dept, 102

Fixed effects:

Estimate Std. Error t value

(Intercept) 3.1996 0.0314 102
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Comments on the model fit

• n = 1685394, p = 1, k = 3, n1 = 54711, n2 = 7915,
n3 = 102, q1 = q2 = q3 = 1, q = 62728

• This model is sometimes called the “unconditional” model in
that it does not incorporate covariates beyond the grouping
factors.

• It takes less than an hour to fit an ”unconditional” model
with random effects for student (id), instructor (inst) and
department (dept) to these data.

• Naturally, this is just the first step. We want to look at
possible time trends and the possible influences of the
covariates.

• This is an example of what “large” and “unbalanced” mean
today. The size of the data sets and the complexity of the
models in mixed modeling can be formidable.
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Outline

Organizing and plotting data; simple, scalar random effects

Models for longitudinal data

Singular variance-covariance matrices

Unbalanced, non-nested data sets

Interactions of grouping factors and other covariates

Evaluating the log-likelihood
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Simple longitudinal data

• Repeated measures data consist of measurements of a
response (and, perhaps, some covariates) on several
experimental (or observational) units.

• Frequently the experimental (observational) unit is Subject

and we will refer to these units as “subjects”. However, the
methods described here are not restricted to data on human
subjects.

• Longitudinal data are repeated measures data in which the
observations are taken over time.

• We wish to characterize the response over time within
subjects and the variation in the time trends between subjects.

• Frequently we are not as interested in comparing the
particular subjects in the study as much as we are interested
in modeling the variability in the population from which the
subjects were chosen.
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Sleep deprivation data

• This laboratory experiment measured the effect of sleep
deprivation on cognitive performance.

• There were 18 subjects, chosen from the population of
interest (long-distance truck drivers), in the 10 day trial.
These subjects were restricted to 3 hours sleep per night
during the trial.

• On each day of the trial each subject’s reaction time was
measured. The reaction time shown here is the average of
several measurements.

• These data are balanced in that each subject is measured the
same number of times and on the same occasions.
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Reaction time versus days by subject
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Comments on the sleep data plot

• The plot is a “trellis” or “lattice” plot where the data for each
subject are presented in a separate panel. The axes are
consistent across panels so we may compare patterns across
subjects.

• A reference line fit by simple linear regression to the panel’s
data has been added to each panel.

• The aspect ratio of the panels has been adjusted so that a
typical reference line lies about 45◦ on the page. We have the
greatest sensitivity in checking for differences in slopes when
the lines are near ±45◦ on the page.

• The panels have been ordered not by subject number (which
is essentially a random order) but according to increasing
intercept for the simple linear regression. If the slopes and the
intercepts are highly correlated we should see a pattern across
the panels in the slopes.
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Assessing the linear fits

• In most cases a simple linear regression provides an adequate
fit to the within-subject data.

• Patterns for some subjects (e.g. 350, 352 and 371) deviate
from linearity but the deviations are neither widespread nor
consistent in form.

• There is considerable variation in the intercept (estimated
reaction time without sleep deprivation) across subjects – 200
ms. up to 300 ms. – and in the slope (increase in reaction
time per day of sleep deprivation) – 0 ms./day up to 20
ms./day.

• We can examine this variation further by plotting confidence
intervals for these intercepts and slopes. Because we use a
pooled variance estimate and have balanced data, the
intervals have identical widths.

• We again order the subjects by increasing intercept so we can
check for relationships between slopes and intercepts.



Simple Longitudinal Singular Non-nested Interactions Theory

95% conf int on within-subject intercept and slope
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These intervals reinforce our earlier impressions of considerable
variability between subjects in both intercept and slope but little
evidence of a relationship between intercept and slope.
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A preliminary mixed-effects model

• We begin with a linear mixed model in which the fixed effects
[β1, β2]′ are the representative intercept and slope for the
population and the random effects
bi = [bi1, bi2]′, i = 1, . . . , 18 are the deviations in intercept and
slope associated with subject i.

• The random effects vector, b, consists of the 18 intercept
effects followed by the 18 slope effects.
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Fitting the model
> (fm1 <- lmer(Reaction ~ Days + (Days | Subject),
+ sleepstudy))

Linear mixed model fit by REML

Formula: Reaction ~ Days + (Days | Subject)

Data: sleepstudy

AIC BIC logLik deviance REMLdev

1756 1775 -871.8 1752 1744

Random effects:

Groups Name Variance Std.Dev. Corr

Subject (Intercept) 612.095 24.7405

Days 35.071 5.9221 0.065

Residual 654.944 25.5919

Number of obs: 180, groups: Subject, 18

Fixed effects:

Estimate Std. Error t value

(Intercept) 251.405 6.825 36.84

Days 10.467 1.546 6.77

Correlation of Fixed Effects:

(Intr)

Days -0.138
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Terms and matrices

• The term Days in the formula generates a model matrix X
with two columns, the intercept column and the numeric Days

column. (The intercept is included unless suppressed.)

• The term (Days|Subject) generates a vector-valued random
effect (intercept and slope) for each of the 18 levels of the
Subject factor.
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A model with uncorrelated random effects

• The data plots gave little indication of a systematic
relationship between a subject’s random effect for slope and
his/her random effect for the intercept. Also, the estimated
correlation is quite small.

• We should consider a model with uncorrelated random effects.
To express this we use two random-effects terms with the
same grouping factor and different left-hand sides. In the
formula for an lmer model, distinct random effects terms are
modeled as being independent. Thus we specify the model
with two distinct random effects terms, each of which has
Subject as the grouping factor. The model matrix for one
term is intercept only (1) and for the other term is the column
for Days only, which can be written 0+Days. (The expression
Days generates a column for Days and an intercept. To
suppress the intercept we add 0+ to the expression; -1 also
works.)
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A mixed-effects model with independent random effects

Linear mixed model fit by REML

Formula: Reaction ~ Days + (1 | Subject) + (0 + Days | Subject)

Data: sleepstudy

AIC BIC logLik deviance REMLdev

1754 1770 -871.8 1752 1744

Random effects:

Groups Name Variance Std.Dev.

Subject (Intercept) 627.577 25.0515

Subject Days 35.852 5.9876

Residual 653.594 25.5655

Number of obs: 180, groups: Subject, 18

Fixed effects:

Estimate Std. Error t value

(Intercept) 251.405 6.885 36.51

Days 10.467 1.559 6.71

Correlation of Fixed Effects:

(Intr)

Days -0.184
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Comparing the models

• Model fm1 contains model fm2 in the sense that if the
parameter values for model fm1 were constrained so as to
force the correlation, and hence the covariance, to be zero,
and the model were re-fit, we would get model fm2.

• The value 0, to which the correlation is constrained, is not on
the boundary of the allowable parameter values.

• In these circumstances a likelihood ratio test and a reference
distribution of a χ2 on 1 degree of freedom is suitable.

> anova(fm2, fm1)

Data: sleepstudy

Models:

fm2: Reaction ~ Days + (1 | Subject) + (0 + Days | Subject)

fm1: Reaction ~ Days + (Days | Subject)

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)

fm2 5 1762.05 1778.01 -876.02

fm1 6 1763.99 1783.14 -875.99 0.0609 1 0.805
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Conclusions from the likelihood ratio test

• Because the large p-value indicates that we would not reject
fm2 in favor of fm1, we prefer the more parsimonious fm2.

• This conclusion is consistent with the AIC (Akaike’s
Information Criterion) and the BIC (Bayesian Information
Criterion) values for which “smaller is better”.

• We can also use a Bayesian approach, where we regard the
parameters as themselves being random variables, is assessing
the values of such parameters. A currently popular Bayesian
method is to use sequential sampling from the conditional
distribution of subsets of the parameters, given the data and
the values of the other parameters. The general technique is
called Markov chain Monte Carlo sampling.

• The lme4 package has a function called mcmcsamp to evaluate
such samples from a fitted model. At present, however, there
seem to be a few “infelicities”, as Bill Venables calls them, in
this function.
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Likelihood ratio tests on variance components
• As for the case of a covariance, we can fit the model with and

without the variance component and compare the fit quality.
• As mentioned previously, the likelihood ratio is a reasonable

test statistic for the comparison but the “asymptotic”
reference distribution of a χ2 does not apply because the
parameter value being tested is on the boundary.

• The p-value computed using the χ2 reference distribution
should be conservative (i.e. greater than the p-value that
would be obtained through simulation).

> fm3 <- lmer(Reaction ~ Days + (1 | Subject), sleepstudy)
> anova(fm3, fm2)

Data: sleepstudy

Models:

fm3: Reaction ~ Days + (1 | Subject)

fm2: Reaction ~ Days + (1 | Subject) + (0 + Days | Subject)

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)

fm3 4 1802.10 1814.87 -897.05

fm2 5 1762.05 1778.01 -876.02 42.053 1 8.885e-11
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Conditional modes of the random effects
> (rr2 <- ranef(fm2))

$Subject

(Intercept) Days

308 1.5138200 9.3232135

309 -40.3749105 -8.5989183

310 -39.1816682 -5.3876346

330 24.5182907 -4.9684965

331 22.9140346 -3.1938382

332 9.2219311 -0.3084836

333 17.1560765 -0.2871973

334 -7.4515945 1.1159563

335 0.5774094 -10.9056435

337 34.7689482 8.6273639

349 -25.7541541 1.2806475

350 -13.8642120 6.7561993

351 4.9156063 -3.0750415

352 20.9294539 3.5121076

369 3.2587507 0.8730251

370 -26.4752098 4.9836365

371 0.9055257 -1.0052631

372 12.4219020 1.2583667
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Scatterplot of the conditional modes
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Comparing within-subject coefficients

• For this model we can combine the conditional modes of the
random effects and the estimates of the fixed effects to get
conditional modes of the within-subject coefficients.

• These conditional modess will be “shrunken” towards the
fixed-effects estimates relative to the estimated coefficients
from each subject’s data. John Tukey called this “borrowing
strength” between subjects.

• Plotting the shrinkage of the within-subject coefficients shows
that some of the coefficients are considerably shrunken toward
the fixed-effects estimates.

• However, comparing the within-group and mixed model fitted
lines shows that large changes in coefficients occur in the
noisy data. Precisely estimated within-group coefficients are
not changed substantially.
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Estimated within-group coefficients and BLUPs
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Observed and fitted

Days of sleep deprivation
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Plot of prediction intervals for the random effects
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Each set of prediction intervals have constant width because of the
balance in the experiment.
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Conclusions from the example

• Carefully plotting the data is enormously helpful in
formulating the model.

• It is relatively easy to fit and evaluate models to data like
these, from a balanced designed experiment.

• We consider two models with random effects for the slope and
the intercept of the response w.r.t. time by subject. The
models differ in whether the (marginal) correlation of the
vector of random effects per subject is allowed to be nonzero.

• The “estimates” (actually, the conditional modes) of the
random effects can be considered as penalized estimates of
these parameters in that they are shrunk towards the origin.

• Most of the prediction intervals for the random effects overlap
zero.
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Outline

Organizing and plotting data; simple, scalar random effects

Models for longitudinal data

Singular variance-covariance matrices

Unbalanced, non-nested data sets

Interactions of grouping factors and other covariates

Evaluating the log-likelihood
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Random-effects variances estimated as zero?

• The estimated variance of the random effects for a given term
must be non-negative. It can be shown that they must be also
be finite. However, it is possible for the estimate to be exactly
zero, indicating an overspecified model. In these cases we
should respecify the model to have fewer random effects.

• Because the estimates of these variances are printed explicitly,
it is obvious to us when such a situation occurs (although you
need to watch for estimated variances that are very close to
but not exactly zero).

• Box and Tiao in “Bayesian Inference in Statistical Analysis”
(Addison-Wesley, 1973) provide simulated data similar to the
Dyestuff data but with much lower batch-to-batch variability.
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Dyestuff2 data plot
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Model fit for Dyestuff2

> lmer(Yield ~ 1 + (1 | Batch), Dyestuff2)

Linear mixed model fit by REML

Formula: Yield ~ 1 + (1 | Batch)

Data: Dyestuff2

AIC BIC logLik deviance REMLdev

167.8 172.0 -80.91 162.9 161.8

Random effects:

Groups Name Variance Std.Dev.

Batch (Intercept) 1.9844e-09 4.4547e-05

Residual 1.3806e+01 3.7157e+00

Number of obs: 30, groups: Batch, 6

Fixed effects:

Estimate Std. Error t value

(Intercept) 5.6656 0.6784 8.352
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Singular variance-covariance matrices

• With vector-valued random effects we can obtained a singular
or near-singular estimate of a variance-covariance matrix that
has safely non-zero variances for all components. It is harder
to spot such singularities. If there are only two random effects
per level of the grouping factor we can recognize this situation
as generating highly correlated (sometimes perfectly
correlated) random effects. For dimensions greater than 2,
even this signal may fail to be present.

• I will likely add a diagnostic method with a name like rcond

(reciprocal of the condition number) to lme4 to make this
situation easier to spot.
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The early childhood cognitive study data

• In an experiment reported in Burchinal et al. (Cognitive
Development, 1997) young children were randomly assigned
to a treatment group and a control group at 6 months of age
and their cognitive development was measured at 1, 1.5 and 2
years of age, on an age-normed scale. (The treatment was
exposure to an enriched environment.)

• Because the treatment began at 6 months of age, we will use
tos = age - 0.5 (time on study), as the time variable.
Because the treatment groups are assumed to be
homogeneous at the beginning of the study, we do not expect
to see a trt main effect. The effect of the treatment, if any,
will show up in the tos:trt interaction term.

• These data are the initial example in Singer and Willett,
Longitudinal Data Analysis (Oxford, 2003). Models are fit
using both SAS and MLWin but the singularity in the
estimated variance-covariance matrix is never noticed.
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Early childhood cognitive data plot
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Some comments on the data plot

• Notice that, for both groups, the slopes are almost always
negative. This is curious if the scale has been age-normed.

• Also, the initial measurement at age 1 yr seems high. If the
scale is age-normed then we would expect the observations in
(at least) the control group to have a mean near 100.

> with(subset(Early, age == 1 & trt == "N"), summary(cog))

Min. 1st Qu. Median Mean 3rd Qu. Max.

80.0 98.0 110.0 108.5 117.0 134.0

> t.test(subset(Early, age == 1 & trt == "N")$cog,
+ mu = 100)$p.value

[1] 3.004468e-05
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Comparative box-and-whisker plots
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Density by age within group
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Density by group within age
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Initial model fit

> Early <- within(Early, tos <- age - 0.5)
> fm1 <- lmer(cog ~ tos * trt + (tos | id), Early,
+ verbose = TRUE)

0: 2390.0424: 0.942809 0.872872 0.00000

1: 2375.7837: 1.18238 0.00000 -0.409227

2: 2364.4300: 1.30850 8.72884e-06 -0.0406037

3: 2359.1951: 1.62268 0.00000 -0.269248

4: 2358.8599: 1.49156 0.0430307 -0.272762

5: 2358.8282: 1.47650 0.0652259 -0.233211

6: 2358.7448: 1.47409 0.0193923 -0.246519

7: 2358.7429: 1.48001 0.0127276 -0.248899

8: 2358.7426: 1.47952 0.00355024 -0.249716

9: 2358.7425: 1.48080 0.00000 -0.249545

10: 2358.7425: 1.48070 0.00000 -0.249736

11: 2358.7425: 1.48069 0.00000 -0.249728
The second parameter being exactly zero is a danger sign.
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Summary of initial model

> print(fm1, corr = FALSE)

Linear mixed model fit by REML

Formula: cog ~ tos * trt + (tos | id)

Data: Early

AIC BIC logLik deviance REMLdev

2375 2405 -1179 2370 2359

Random effects:

Groups Name Variance Std.Dev. Corr

id (Intercept) 165.518 12.8654

tos 10.326 3.2133 -1.000

Residual 75.495 8.6888

Number of obs: 309, groups: id, 103

Fixed effects:

Estimate Std. Error t value

(Intercept) 118.407 2.755 42.97

tos -21.133 1.893 -11.16

trtY 4.219 3.672 1.15

tos:trtY 5.271 2.523 2.09
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Comments on the fitted model

• As expected, the main effect for treatment group is not
significant. Recall that we changed the time scale so zero
corresponds to the beginning of the intervention.

• The only danger sign in the output about singularity of the
variance-covariance of the random effects is the fact that the
estimated correlation is exactly -1.

• Even after refitting without the main effect for treatment, this
high negative correlation is present.

• If you display the covariance instead of the correlation, it is
very difficult to see that something is amiss.
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Re-fit without the main effect for treatment

> print(fm2 <- update(fm1, . ~ . - trt, verbose = FALSE),
+ corr = FALSE)

Linear mixed model fit by REML

Formula: cog ~ tos + (tos | id) + tos:trt

Data: Early

AIC BIC logLik deviance REMLdev

2379 2405 -1182 2371 2365

Random effects:

Groups Name Variance Std.Dev. Corr

id (Intercept) 166.403 12.8997

tos 10.484 3.2379 -1.000

Residual 75.540 8.6914

Number of obs: 309, groups: id, 103

Fixed effects:

Estimate Std. Error t value

(Intercept) 120.783 1.824 66.22

tos -22.470 1.494 -15.04

tos:trtY 7.646 1.447 5.29
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Conditional modes of the random effects
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Handling singularity

• We can try to redefine the model with fewer random effects or
with uncorrelated random effects, if such a model would make
sense and if the model fits are adequate.

• In this case, the reduced models with independent random
effects or with random effects for the intercept only are not
adequate.

• There is little that can be done here to handle the singularity
in the model fit, because the singularity is related to
anomalies in the data.

> fm2M <- update(fm2, REML = FALSE)
> fm3M <- lmer(cog ~ tos + tos:trt + (1 | id) + (0 +
+ tos | id), Early, REML = FALSE)
> fm4M <- lmer(cog ~ tos + tos:trt + (1 | id), Early,
+ REML = FALSE)
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Checking possible reduced models

> anova(fm3M, fm2M)

Data: Early

Models:

fm3M: cog ~ tos + tos:trt + (1 | id) + (0 + tos | id)

fm2M: cog ~ tos + (tos | id) + tos:trt

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)

fm3M 6 2389.0 2411.4 -1188.5

fm2M 7 2385.3 2411.4 -1185.6 5.7206 1 0.01677

> anova(fm4M, fm2M)

Data: Early

Models:

fm4M: cog ~ tos + tos:trt + (1 | id)

fm2M: cog ~ tos + (tos | id) + tos:trt

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)

fm4M 5 2387.0 2405.7 -1188.5

fm2M 7 2385.3 2411.4 -1185.6 5.7206 2 0.05725
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Outline

Organizing and plotting data; simple, scalar random effects

Models for longitudinal data

Singular variance-covariance matrices

Unbalanced, non-nested data sets

Interactions of grouping factors and other covariates

Evaluating the log-likelihood
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A smaller, non-nested unbalanced example
To examine the structure of non-nested, unbalanced observational
data we need a smaller example than the 1.68 million observations
in the 10 years of grade point scores.
> str(ScotsSec)

’data.frame’: 3435 obs. of 6 variables:

$ verbal : num 11 0 -14 -6 -30 -17 -17 -11 -9 -19 ...

$ attain : num 10 3 2 3 2 2 4 6 4 2 ...

$ primary: Factor w/ 148 levels "1","2","3","4",..: 1 1 1 1 1 1 1 1 1 1 ...

$ sex : Factor w/ 2 levels "M","F": 1 2 1 1 2 2 2 1 1 1 ...

$ social : num 0 0 0 20 0 0 0 0 0 0 ...

$ second : Factor w/ 19 levels "1","2","3","4",..: 9 9 9 9 9 9 1 1 9 9 ...

> stab <- xtabs(~second + primary, ScotsSec, sparse = TRUE)
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Mean attainment by school

> head(patt)

mattain n type

1P 4.425926 54 Primary

2P 5.285714 7 Primary

3P 8.666667 3 Primary

4P 6.285714 7 Primary

5P 4.679245 53 Primary

6P 5.927273 55 Primary

> head(satt)

mattain n type

1S 5.365297 219 Secondary

2S 6.060302 199 Secondary

3S 5.455128 156 Secondary

4S 6.345324 139 Secondary

5S 6.074286 175 Secondary

6S 5.892000 250 Secondary
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Normal probability plot of mean attainment by school

Standard normal quantiles
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Simple Longitudinal Singular Non-nested Interactions Theory

Probability plot of pretest by posttest and sex

Standard normal quantiles

V
er

ba
l p

re
te

st
 s

co
re

−20

0

20

40

−3 −2 −1 0 1 2 3

● ● ● ●●●

●
●

●
●●

●●
●●

●●
●●

●●●●●
●●●

●●
●●●●

●●
●

●●

●●●●
●●

●●
●●●

●

●

● ●
●

●

● ● ●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●

●●●●●●
●●●●
●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●
●●●●●●●●
●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●
●●●●●●●●●

●●●●●●●
●
●●●●●

●●●
●
●
●●

●

●

●

●

● ● ●●●●
●●●

●
●●●●

●●●
●
●●●●●

●●●
●●●●
●●●●●

●●●●●
●●●●●●●●

●●●●●●●●●●
●●●●●●●●

●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●
●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●

●●●●●●●
●●●●●●●●

●●●●●●●●

●●●●●●●●●●●
●●●●●●

●●●●●●
●
●●●●
●●●●●

●●
●●●●●●

●●●
●●●●

●
●
●●●

●

● ●

●

●

●
●

●●
●
●●

●●●
●●●

●●
●●●●

●●●●●
●●●●●●

●●●●
●●●●●●●●●

●●●●●●●●●●
●●●●●●

●●●●●
●●●
●●●●
●●●●●●

●●●●●●●●●●●●●●

●●●●●●●
●●●●●●

●●●●●●●●●●●
●●
●●●●●

●●●●●●●●●
●●●●

●●●
●●●●

●●●
●●

●●

●
●●

●
●

●

●

●

●

●

●●

●
●●●

●
●●●

●
●●●●

●●●
●

●●●●
●●●●●●

●●●●●●●●
●●●●
●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●
●●●●●●●

●●●●●●●●●●●
●●●●●●

●●●●●●●●●
●●●●●●

●●●●●
●●●●●●

●●
●●●●

●●
●
●●●●●

●●

●
●

●
●

●
●

● ●
●●●

●
●

●

●●●
●●●

●●●
●●●

●●●●●●●
●●●●●●

●●●●●●
●●●●●●●●●

●●●●●●●
●●●●●

●●●●●
●●●●●●●●

●●●●●
●
●●●

●●●●
●●

●●
●●●

●●

●
● ●

● ●

●
●

●

●●●
●●●

●●●
●●●●

●●●●
●●●●

●●●●●
●●●●●●●

●●

●●
●●
●●●●●●●

●●●●●
●●●●●●

●●●●
●●●●●

●●●●●
●●●●

●●●
●●●

●
●
●●●

●●
●●

●●
●

●

●

●

● ●

●●
●

●
●
●
●
●
●●●●●●●

●●●
●●●●

●●
●●●●●●●●

●●●
●●●
●●●●●●●●●●

●●●●●●●●
●●●●●●●

●●●●
●●●●●●●

●●●
●●●●●

●●●
●●●●●

●●●●●
●●●

●
●
●
●●●●

●●
●●●●

●●

●
●

●

●

●
●●

●●
●
●●

●●
●●●

●●●●

●●●
●●●●●

●●●●●●●●●
●●●●●●

●●●●●●
●●●●●●●

●●●●●●●
●●●●●●●●

●●●
●●●●●●●●

●●●●●●●●●
●●●●●

●●●●
●●●●●

●●●●●●
●●●
●●●●●●●

●●
●●●

●●●●
●
●●

●
●
●●

●

●

●●

●

●

●

●
●

●●
●●●●

●●●
●●●●●

●●●●●●●
●●●●●●●

●●●●●●●
●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●
●●●●●●●●
●●●●●●●
●●●●●●●●
●●●●●●
●●●●●●●●●

●●●●●●
●●●
●●●●●●●●

●●●●●●●●
●●●
●●●●●
●●
●
●●●●●●●

●●
●●●●

●●●
●●●

●●

●●●●

●

●● ● ●

M

−3 −2 −1 0 1 2 3

● ● ● ●

●●

●●

●●●

●●
●●●

●
●
●
●

●

●
●●

●●
●

● ●

●

●

● ● ●●●●●●●●●●●●●●●●●●
●●●●

●●●●●
●
●●●●
●●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●

●●●●●
●●●●●●
●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●
●●●●●●●●

●●●●●●●●
●●●●●●●

●●●●●●●

●●●●●
●●●●●

●●●●●●
●●●●

●●●
●●●●●

●
●●●

●

●

● ●
●

●
●●

●●

●●
●●

●●●●●
●●
●●●●●●●

●●
●●●●●●●●●●

●●●●●
●●●●●●●●●●

●●●●●●
●●●●●●●●●●●●

●●●●●●●●●
●●●●●●
●●●●●●●●●

●●●●
●●●●●●●●●●

●●●●●●
●●●●●●●●●

●●●
●●●●●●●●●●●●●●●●

●●●●●●
●●●●●●

●●●●●●●●
●●●●●

●●●●●●
●●●
●●●●

●●●●●
●●●●●

●
●

●●●●●
●

●

●

●

●
●

●
●
●
●
●●

●●
●●●

●●●
●●●●

●●●●

●●●●●●●●●●
●●●●●

●●●●●●●●●
●●●●●●●●●●

●●●●●●●●
●●●●●●●●●

●●●●●●●●●●●●
●●●●●●

●●●●●●●●●●●

●●●●●●●
●
●●●●●●●

●●●
●●●●●●

●●●●
●●●

●●●●●●
●●●●

●●●●

●●

●

● ●

●

●

●
●●●

●●●●
●
●●●●●●

●●●●●●
●●●●

●●●●●
●●●●●

●●●●●
●●●●●●●●●●

●●●●●●●
●●●●●

●●●●●●●●●●●●●●

●●●●●●●
●●●●●●●

●●●●●●
●●●●●

●
●●●●●●

●●●●●●
●●●●●●

●●
●●●●

●●●
●●
●●●

●
●●●

●

●●
●

●

●

●
● ●

●●●

●

●●●
●●●

●●●
●●●●

●●●●●●●
●●●●

●●●●●●●
●●●●●●●

●●●●●●●●

●●●●●●
●●●●●

●●●●●
●●●●
●●●●●●●●●●

●●●●●●●●●
●●
●●●●●●

●●●●
●●●●●

●●●●●
●●●●

●●
●●●

●●●●
●●

●●
●●

●

●

●

●

●●

●●●●
●●●●

●●
●●●

●●●●
●●●

●●●●●●
●●●●●●●●●●

●●●●●●●●●
●●●●●

●●●●●●
●●●●
●●●●●●●

●●●●
●●●●●●

●●●●●●
●●●●

●●●●●
●●●●●●

●●●
●●●●●●

●●●●●

●●●●●
●
●●

●

●
●

●

●

●

● ●
●

●
●●

●●
●●

●
●●●

●●●
●●●

●●●●
●●●●●●●

●●●●
●●●●●●●●●

●●●●●●
●●●●●●●

●●●●●●●●●●●
●●●●●●

●●●●
●●●
●●●●

●●●●●●
●●●●

●●●
●●●

●●
●●●●●

●

●●

●

●

●

● ●
●●

●
●●

●●
●●

●●
●●●●

●●●●●●●●●
●●●●●

●●●●●●●●●
●●●●●

●●●●●
●●●●●●●●●●

●●●●
●●●●●●●●

●●●●●
●●●●
●●●●●●●●●●

●●●
●●●●●●●

●●●
●●●●●

●●●●●●●
●●●●●

●●●
●●●
●●
●●
●●●

●●●
●●●

●
●

●
●

●●
●

●

●

●

●

●●

●
●●●●

●●
●
●
●●●

●●●
●●●●●●

●●●
●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●
●●●●●●●●

●●●●●●●●●
●●●●
●●●●●
●●●●●●●

●
●●●●

●●●●●
●●●●

●●
●●

●●
●

● ●

F

attain
1
2
3
4
5
6
7
8
9
10

●

●

●

●

●

●

●

●

●

●



Simple Longitudinal Singular Non-nested Interactions Theory

An LMM for the secondary school data

Linear mixed model fit by REML

Formula: attain ~ verbal + sex + (1 | primary) + (verbal | second)

Data: ScotsSec

AIC BIC logLik deviance REMLdev

14875 14924 -7429 14842 14859

Random effects:

Groups Name Variance Std.Dev. Corr

primary (Intercept) 2.7825e-01 0.5274908

second (Intercept) 2.4862e-02 0.1576754

verbal 4.0435e-05 0.0063588 0.799

Residual 4.2434e+00 2.0599441

Number of obs: 3435, groups: primary, 148; second, 19

Fixed effects:

Estimate Std. Error t value

(Intercept) 5.912760 0.080172 73.75

verbal 0.159249 0.003174 50.17

sexF 0.113791 0.071440 1.59
n = 3435, p = 3, k = 2, n1 = 148, n2 = 19, q1 = 1, q2 = 2,
q = 186



Simple Longitudinal Singular Non-nested Interactions Theory

Reduced LMM for the secondary school data

Linear mixed model fit by REML

Formula: attain ~ verbal + sex + (1 | primary) + (1 | second)

Data: ScotsSec

AIC BIC logLik deviance REMLdev

14872 14909 -7430 14843 14860

Random effects:

Groups Name Variance Std.Dev.

primary (Intercept) 0.276261 0.52561

second (Intercept) 0.014455 0.12023

Residual 4.251960 2.06203

Number of obs: 3435, groups: primary, 148; second, 19

Fixed effects:

Estimate Std. Error t value

(Intercept) 5.919273 0.076151 77.73

verbal 0.159593 0.002778 57.46

sexF 0.115966 0.071463 1.62
n = 3435, p = 3, k = 2, n1 = 148, n2 = 19, q1 = 1, q2 = 1,
q = 167



Simple Longitudinal Singular Non-nested Interactions Theory

Reordering unbalanced, non-nested data
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Simple Longitudinal Singular Non-nested Interactions Theory

Secondary school random effects are poorly defined
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Simple Longitudinal Singular Non-nested Interactions Theory

Model without random effects for second

> Sm3 <- update(Sm2, . ~ . - (1 | second))
> anova(Sm3, Sm2)

Data: ScotsSec

Models:

Sm3: attain ~ verbal + sex + (1 | primary)

Sm2: attain ~ verbal + sex + (1 | primary) + (1 | second)

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)

Sm3 5 14853.3 14884.0 -7421.6

Sm2 6 14855.0 14891.8 -7421.5 0.295 1 0.587



Simple Longitudinal Singular Non-nested Interactions Theory

Random effects for primary are not that remarkable
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Simple Longitudinal Singular Non-nested Interactions Theory

Outline

Organizing and plotting data; simple, scalar random effects

Models for longitudinal data

Singular variance-covariance matrices

Unbalanced, non-nested data sets

Interactions of grouping factors and other covariates

Evaluating the log-likelihood



Simple Longitudinal Singular Non-nested Interactions Theory

Interactions of covariates and grouping factors

• For longitudinal data, having a random effect for the slope
w.r.t. time by subject is reasonably easy to understand.

• Although not generally presented in this way, these random
effects are an interaction term between the grouping factor for
the random effect (subject) and the time covariate.

• We can also define interactions between discrete covariates in
the fixed-effects terms and a random-effects grouping factor.
However, there is more than one way to define such an
interaction.

• Different ways of expressing such interactions lead to different
numbers of random effects.

• Models with interactions defined in different ways have levels
of complexity, affecting both their expressive power and the
ability to estimate all the parameters in the model.



Simple Longitudinal Singular Non-nested Interactions Theory

Machines data

• Milliken and Johnson (1989) provide (probably artificial) data
on an experiment to measure productivity according to the
machine being used for a particular operation.

• In the experiment, a sample of six different operators used
each of the three machines on three occasions — a total of
nine runs per operator.

• These three machines were the specific machines of interest
and we model their effect as a fixed-effect term.

• The operators represented a sample from the population of
potential operators. We model this factor, (Worker), as a
random effect.

• This is a replicated “subject/stimulus” design with a fixed set
of stimuli that are themselves of interest. (In other situations
the stimuli may be a sample from a population of stimuli.)



Simple Longitudinal Singular Non-nested Interactions Theory

Machines data plot
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Simple Longitudinal Singular Non-nested Interactions Theory

Comments on the data plot

• There are obvious differences between the scores on different
machines.

• It seems likely that Worker will be a significant random effect,
especially when considering the low variation within replicates.

• There also appears to be a significant Worker:Machine

interaction. Worker 6 has a very different pattern w.r.t.
machines than do the others.

• We can approach the interaction in one of two ways: define
simple, scalar random effects for Worker and for the
Worker:Machine interaction or define vector-valued random
effects for Worker



Simple Longitudinal Singular Non-nested Interactions Theory

Random effects for subject and subject/stimulus

> print(fm1 <- lmer(score ~ Machine + (1 | Worker) +
+ (1 | Worker:Machine), Machines), corr = FALSE)

Linear mixed model fit by REML

Formula: score ~ Machine + (1 | Worker) + (1 | Worker:Machine)

Data: Machines

AIC BIC logLik deviance REMLdev

227.7 239.6 -107.8 225.5 215.7

Random effects:

Groups Name Variance Std.Dev.

Worker:Machine (Intercept) 13.90963 3.72956

Worker (Intercept) 22.85529 4.78072

Residual 0.92464 0.96158

Number of obs: 54, groups: Worker:Machine, 18; Worker, 6

Fixed effects:

Estimate Std. Error t value

(Intercept) 52.356 2.486 21.062

MachineB 7.967 2.177 3.659

MachineC 13.917 2.177 6.393



Simple Longitudinal Singular Non-nested Interactions Theory

Vector-valued random effects by subject

> print(fm2 <- lmer(score ~ Machine + (0 + Machine |
+ Worker), Machines), corr = FALSE)

Linear mixed model fit by REML

Formula: score ~ Machine + (0 + Machine | Worker)

Data: Machines

AIC BIC logLik deviance REMLdev

228.3 248.2 -104.2 216.6 208.3

Random effects:

Groups Name Variance Std.Dev. Corr

Worker MachineA 16.64098 4.07934

MachineB 74.39558 8.62529 0.803

MachineC 19.26646 4.38936 0.623 0.771

Residual 0.92463 0.96158

Number of obs: 54, groups: Worker, 6

Fixed effects:

Estimate Std. Error t value

(Intercept) 52.356 1.681 31.150

MachineB 7.967 2.421 3.291

MachineC 13.917 1.540 9.037
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Comparing the model fits

• Although not obvious from the specifications, the model fits
are nested. If the variance-covariance matrix for the
vector-valued random effects has a special form, called
compound symmetry, the model reduces to model fm1.

• The p-value from this comparison is borderline significant.

> fm2M <- update(fm2, REML = FALSE)
> fm1M <- update(fm1, REML = FALSE)
> anova(fm2M, fm1M)

Data: Machines

Models:

fm1M: score ~ Machine + (1 | Worker) + (1 | Worker:Machine)

fm2M: score ~ Machine + (0 + Machine | Worker)

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)

fm1M 6 237.27 249.20 -112.64

fm2M 10 236.42 256.31 -108.21 8.8516 4 0.06492
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Model comparisons eliminating the unusual combination

• In a case like this we may want to check if a single, unusual
combination (Worker 6 using Machine “B”) causes the more
complex model to appear necessary. We eliminate that
unusual combination.

> Machines1 <- subset(Machines, Worker != "6" | Machine !=
+ "B")
> xtabs(~Machine + Worker, Machines1)

Worker

Machine 1 2 3 4 5 6

A 3 3 3 3 3 3

B 3 3 3 3 3 0

C 3 3 3 3 3 3
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Machines data after eliminating the unusual combination

Quality and productivity score
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Model comparisons without the unusual combination

> fm1aM <- lmer(score ~ Machine + (1 | Worker) + (1 |
+ Worker:Machine), Machines1, REML = FALSE)
> fm2aM <- lmer(score ~ Machine + (0 + Machine | Worker),
+ Machines1, REML = FALSE)
> anova(fm2aM, fm1aM)

Data: Machines1

Models:

fm1aM: score ~ Machine + (1 | Worker) + (1 | Worker:Machine)

fm2aM: score ~ Machine + (0 + Machine | Worker)

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)

fm1aM 6 208.554 220.145 -98.277

fm2aM 10 208.289 227.607 -94.144 8.2655 4 0.08232
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Trade-offs when defining interactions

• It is important to realize that estimating scale parameters (i.e.
variances and covariances) is considerably more difficult than
estimating location parameters (i.e. means or fixed-effects
coefficients).

• A vector-valued random effect term having qi random effects
per level of the grouping factor requires qi(qi + 1)/2
variance-covariance parameters to be estimated. A simple,
scalar random effect for the interaction of a “random-effects”
factor and a “fixed-effects” factor requires only 1 additional
variance-covariance parameter.

• Especially when the “fixed-effects” factor has a moderate to
large number of levels, the trade-off in model complexity
argues against the vector-valued approach.

• One of the major sources of difficulty in using the lme4

package is the tendency to overspecify the number of random
effects per level of a grouping factor.
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Definition of linear mixed models
• As previously stated, we define a linear mixed model in terms

of two random variables: the n-dimensional Y and the
q-dimensional B

• The probability model specifies the conditional distribution

(Y |B = b) ∼ N
(
Xβ + Zb, σ2I

)
and the unconditional distribution

B ∼ N
(
0, σ2Σ(θ)

)
, (Y |B) ⊥ B

as independent, multivariate Gaussian distributions depending
on the parameters β, θ and σ.

• The relative variance-covariance matrix for B, written Σ(θ),
can be factored as

Σ(θ) = T (θ)S(θ)S(θ)T (θ)′ = (TS)(TS)′.

We say that the product T (θ)S(θ) is a left square-root factor
of Σ(θ).
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The conditional distribution, Y |B

• The mean of the conditional distribution, Y |B, is a linear
function of β and b.

µY|B(b) = E[Y |B = b] = η = Xβ + Zb

• For generalized linear models we will distinguish between the
conditional mean, µY|B(b), which may be bounded, and the
linear predictor, η, which is always unbounded. For linear
mixed models, µY|B(b) = η.

• Components of Y are conditionally independent, given B.
That is, the conditional distribution, (Y |B = b), is
determined by the (scalar) distribution of each component.

• Hence, the conditional distribution, (Y |B = b), is completely
determined by the conditional mean, µY|B, and the common
scale parameter, σ.
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The unscaled conditional density of B|Y = y

• Because it is y, not b, that we observe, we are interested in
evaluating the other conditional distribution, (B|Y = y). We
will write its density as [B|Y ](b|y) (it is always continuous,
even when, as in some GLMMs, Y is discrete).

• Given y, θ, β and, if used, σ, we can evaluate [B|Y ](b|y), up
to a scale factor, as [Y |B](y|b) [B](b).

• The inverse of the scale factor,∫
Rq

[Y |B](y|b) [B](b) db,

is exactly the likelihood, L(θ,β, σ2|y) (or L(θ,β, |y) when σ
is not used).
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The unscaled conditional density of U |Y = y

• To simplify the integral defining the likelihood, we change the
variable of integration to u, where U is a vector-valued
random variable with unconditional distribution
U ∼ N (0, σ2Iq) (or U ∼ N (0, Iq), when σ is not used), and
B = T (θ)S(θ)P ′U .

• The linear predictor, η, which determines the conditional
density, [Y |U ](y|u), becomes

η = ZT (θ)S(θ)P ′u + Xβ = A(θ)′P ′u + Xβ,

where A(θ)′ = ZT (θ)S(θ), and likelihood

L(θ,β|y) =
∫

Rq

[Y |U ](y|u) [U ](u) du.



Simple Longitudinal Singular Non-nested Interactions Theory

Maximizing the unscaled density U |Y = y

• In our general strategy for evaluating the likelihood,
L(θ,β, σ2|y), we first maximize the unscaled density of
U |Y = y, w.r.t. u.

• Both [Y |U ](y|u) and [U ](u) are spherical normal densities,
which means that the components are independent with
constant variance, e.g. Var(U) = σ2I, (“spherical” because
the contours of constant density are spheres).

• That is, probability density is related to the (squared) lengths,
‖y − µY|U‖2 and ‖u‖2, with the same scale factor, σ2.

• The conditional mode of U |Y – the value that maximizes the
conditional density (and also the unscaled version) – does not
depend on σ2.

ũ(y|θ,β) = arg max
u

[Y |U ](y|u) [U ](u)

= arg min
u

(
‖y − µY|U‖2 + ‖u‖2

)
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Solving for the conditional mode

• Incorporating the definition of µY|U provides

‖y − µY|U‖2 = ‖y −A′P ′u−Xβ‖2

• Recall that P is a permutation matrix. These have the
property that P−1 = P ′, allowing us to write

‖0− P ′u‖2 = u′PP ′u = u′u = ‖u‖2

• Combining these produces

ũ(y|θ,β) = arg min
u

∥∥∥∥[
y −Xβ

0

]
−

[
A′

I

]
P ′u

∥∥∥∥2

Hence, ũ satisfies

P
(
AA′ + I

)
P ′ũ = LL′ũ = PA(y −Xβ)

where L(θ) is the sparse left Cholesky factor of
P (A(θ)A(θ)′ + I) P ′.
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Evaluating the likelihood - linear mixed models
• Because µY|U depends linearly on both u and β, the

conditional mode ũ(θ) and the conditional maximum
likelihood estimate, β̂(θ), can be determined simultaneously
as the solutions to a penalized least squares problem[

ũ(θ)
β̂(θ)

]
= arg min

u,β

∥∥∥∥[
y
0

]
−

[
A′P ′ X

I 0

] [
u
β

]∥∥∥∥2

for which the solution satisfies[
P (AA′ + I) P ′ PAX

X ′A′P ′ X ′X

] [
ũ(θ)
β̂(θ)

]
=

[
PAy
X ′y

]
• The Cholesky factor of the system matrix for the PLS problem

is[
P (AA′ + I) P ′ PAX

X ′A′P ′ X ′X

]
=

[
L 0

R′
ZX R′

X

] [
L′ RZX

0 RX

]
• The dense matrices RZX and RX are stored in the RZX and
RX slots, respectively.



Simple Longitudinal Singular Non-nested Interactions Theory

Special case of linear mixed models (cont’d)

• It is not necessary to solve for ũ(θ) and β̂(θ). All that is
needed for evaluation of the profiled log-likelihood is the
penalized residual sum of squares, r2, and the determinant

|AA′ + I| = |L|2

• Because L is triangular, its determinant is simply the product
of its diagonal elements.

• Because AA′ + I is positive definite, |L|2 > 0.

• The profiled deviance, as a function of θ only (β and σ2 at
their conditional estimates), is

d(θ|y) = log(|L|2) + n

(
1 + log

(
2πr2

n

))
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REML results

• Although not often derived in this form, Laird and Ware
showed that the REML criterion can be derived as the integral
of the likelihood w.r.t. β.

• The same techniques as used to evaluate the integral w.r.t. b
can be used to evaluate the integral for the REML criterion.
In this case the integral introduces the factor |RX |2.

• The profiled REML deviance, as a function of θ only ( σ at its
conditional estimate), is

dR(θ|y) = log(|L|2|RX |2) + (n− p)
(

1 + log
(

2πr2

n− p

))
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Recap

• For a linear mixed model, even one with a huge number of
observations and random effects like the model for the grade
point scores, evaluation of the ML or REML profiled deviance,
given a value of θ, is straightforward. It involves updating T
and S, then updating A, L, RZX , RX , calculating the
penalized residual sum of squares, r and a couple of
determinants of triangular matrices.

• The profiled deviance can be optimized as a function of θ
only. The dimension of θ is usually very small. For the grade
point scores there are only three components to θ.
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