Notes on Nelder-Mead algorithm for maximizing a log likelihood \(L(\theta) \), with parameter \(\theta \in \mathbb{R}^p \).

The algorithm produces a sequence of sets \(S_1, S_2, \ldots, S_m, \ldots \) with any \(S = \{ \theta_0, \ldots, \theta_{p+1} \} \), \(p+1 \) points in \(\mathbb{R}^p \).

Assume that we start with \(S \) not a hyperplane. Update until stopping condition:
1. \(\theta_j \)'s sufficiently close within \(S \)
2. \(L(\theta_j) \)'s sufficiently close
3. Reach maximum number of iterations

Updates proceed by trying to improve the \(L(\theta) \) value of points in current \(S_m = \emptyset \).

Reflect step: First identify three points in \(S \).

\[\theta_0 = \text{value with smallest } L(\theta) \]
\[\theta_b = \text{best (largest) } L(\theta) \]
\[\theta_{b+1} = \text{2nd smallest } L(\theta) \]

and form
\[\theta_o = \frac{1}{p} \sum_{j \neq b} \theta_j \quad \text{[mean of non-out]} \]
Construct \(q_r = (1 + \alpha) q_o - \alpha q_o \)

for some \(\alpha > 0 \)

\[q_0 = \frac{1}{p} \sum_{j \neq 0} q_j \]

Expansion Step:

If \(l(q_r) > l(q_o) \)

[reflection improves things]

expand further to

\[q_{o^e} = q_o + \gamma (q_r - q_o) \]

for some \(\gamma > 1 \)

if \(l(q_{o^e}) > l(q_r) \)

Return \(S_{m+1} = \{ S_m \mid q_{o^e} \} + f[q_{o^e}] \) \[i.e. \text{drop } q_o \text{ and include } q_e \]

if \(l(q_{o^e}) \leq l(q_r) \)

Return \(S_{m+1} = \{ S_m \mid q_{o^e} \} + f[q_{o^e}] \)

i.e., if reflection improves things, try further improvement and take the better \(q_r, q_{o^e} \).
Intermediate Case

\[l(Q_{01}) \leq l(o_c) < l(Q_3) \]

then set

\[S_{m1} = (S_m \setminus Q_2) + \{o_c\} \]

[reflection not too bad]

Contraction Case

1. External \[l(Q_4) \leq l(o_c) < l(Q_{0m}) \]

form

\[o_c = Q_0 + \beta (Q_0 - Q_0) \]

for some \(\beta \in (0,1) \)

if \(l(o_c) > l(Q_0) \)

\[S_{m1} = (S_m \setminus Q_2) + \{o_c\} \]

else "shrink" [see below]

2. Internal \(l(o_c) < l(Q_0) \) [reflected point very close]

form

\[o_c = Q_0 + \beta (Q_0 - Q_0) \]
If \(l(\theta_{cc}) > l(\theta_d) \)

\[S_{m+1} = (S_m \theta_d)^2 + l(\theta_{cc}) \]

else "shrink"

Shrink step: if no luck above, and directed here,

\[S_{m+1} = \{ \theta_b, \forall j \neq b, \theta_b + s(\theta_j - \theta_b) \} \]

for some \(s \in (0, 1) \)

Note: in constrained parameter spaces, some adjustment is required to keep all points \(\theta_1, \theta_2, \theta_0, \theta_r, \theta_{cc} \) in the parameter space.