More Checking Models

Bret Larget

Departments of Botany and of Statistics
University of Wisconsin—Madison

April 8, 2008
The Poisson and binomial distributions both are suitable for count data.

In some situations, the proportion of observed zeros can be larger than the model predicts.

One solution is to use a model with overdispersion.

An alternative is to use logistic regression to model presence/absence and then a different model to model the counts when present.

Here we will examine the use of simulation to check the goodness of fit of real data to data simulated under a Poisson model.

We will see if using a model with overdispersion is sufficient when a Poisson model fails.
Case Study:

- **The Dusky Sound** is a large fjord in southwest New Zealand noted for abundant wildlife.
- Biologists conducted a study to examine the relationship between the seaweed *Ecklonia radiata* and the sea urchin *Evechinus chloroticus* in the seas of the fjord.
- The goal is to predict seaweed abundance from urchin abundance and other variables.
- Other predictors include the distance to the mouth of the fjord (in km), the distance to the nearest point of land (in km), and the *fetch*, a sum of distances in km to the nearest land along several radial directions.
- Higher *fetch* values are associated with windier conditions and greater waves.
- There are 103 separate sample locations.
- The number of seaweed and urchins are counted in a 25 m by 1m area.
> sw = read.table("seaweed.txt", header = T)
> str(sw)

'data.frame': 103 obs. of 5 variables:
$ seaweed: int 0 0 0 2 2 1 1 0 0 3 ...
$ urchin : int 5 9 1 1 0 3 2 5 11 2 ...
$ fjord : num 11.5 13 9.7 9.6 7.3 9.1 7 7.5 5.6 10.2 ...
$ land : num 0.6 0.7 1 0.7 0.8 1 0.5 1.1 0.8 0.2 ...
$ fetch : num 28.1 39.7 39.4 33.5 17.4 29.4 27.5 38.9 33.6 36.2 ...
Data Summaries

> `summary(sw)`

<table>
<thead>
<tr>
<th></th>
<th>seaweed</th>
<th>urchin</th>
<th>fjord</th>
<th>land</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min.</td>
<td>0.000</td>
<td>0.000</td>
<td>1.30</td>
<td>0.2000</td>
</tr>
<tr>
<td>1st Qu.</td>
<td>0.000</td>
<td>1.000</td>
<td>7.30</td>
<td>0.6000</td>
</tr>
<tr>
<td>Median</td>
<td>0.000</td>
<td>2.000</td>
<td>9.70</td>
<td>0.7000</td>
</tr>
<tr>
<td>Mean</td>
<td>4.194</td>
<td>2.748</td>
<td>9.58</td>
<td>0.7058</td>
</tr>
<tr>
<td>3rd Qu.</td>
<td>2.000</td>
<td>4.000</td>
<td>12.00</td>
<td>0.8000</td>
</tr>
<tr>
<td>Max.</td>
<td>50.000</td>
<td>11.000</td>
<td>18.40</td>
<td>1.2000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>fetch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min.</td>
<td>17.40</td>
</tr>
<tr>
<td>1st Qu.</td>
<td>28.50</td>
</tr>
<tr>
<td>Median</td>
<td>32.30</td>
</tr>
<tr>
<td>Mean</td>
<td>32.30</td>
</tr>
<tr>
<td>3rd Qu.</td>
<td>36.05</td>
</tr>
<tr>
<td>Max.</td>
<td>48.30</td>
</tr>
</tbody>
</table>

Comparing Fake and Real Data

5 / 24
> library(lattice)
> fig1 = xyplot(seaweed ~ urchin, data = sw, jitter.x = T,
+ pch = 16)
> fig2 = xyplot(seaweed ~ fjord, data = sw, jitter.x = T,
+ pch = 16)
> fig3 = xyplot(seaweed ~ land, data = sw, jitter.x = T,
+ pch = 16)
> fig4 = xyplot(seaweed ~ fetch, data = sw, jitter.x = T,
+ pch = 16)
> print(fig1, split = c(1, 1, 2, 1))
> print(fig2, split = c(2, 1, 2, 1), new = F)
> print(fig3, split = c(1, 1, 2, 1))
> print(fig4, split = c(2, 1, 2, 1), new = F)
Scatter plots

Comparing Fake and Real Data
More Figure Commands

> fig5 = histogram(~urchin, data = sw)
> fig6 = densityplot(~fjord, data = sw, lwd = 2)
> fig7 = densityplot(~land, data = sw, lwd = 2)
> fig8 = densityplot(~fetch, data = sw, lwd = 2)
> print(fig5, split = c(1, 1, 2, 1))
> print(fig6, split = c(2, 1, 2, 1), new = F)
> print(fig7, split = c(1, 1, 2, 1))
> print(fig8, split = c(2, 1, 2, 1), new = F)
Comparing Fake and Real Data
Consider transformations to the urchin variable to decrease the effect of the skewness.

As there are zeros, we cannot take logarithms directly.

Square root is a possibility.

We can also try adding one and then taking logs.

See the graphs and that both are more symmetric.

We will use the log(1 + x) transformation to follow the authors.

\[
\text{> fig9 = densityplot(\~sqrt(urchin), data = sw, lwd = 2)}
\]

\[
\text{> fig10 = densityplot(\~log(1 + urchin), data = sw, lwd = 2)}
\]

\[
\text{> print(fig9, split = c(1, 1, 2, 1))}
\]

\[
\text{> print(fig10, split = c(2, 1, 2, 1), new = F)}
\]
Fitting a Poisson Regression

> fit1.glm = glm(seaweed ~ log(1 + urchin) + fjord + land + fetch, data = sw, family = poisson)
> display(fit1.glm)

glm(formula = seaweed ~ log(1 + urchin) + fjord + land + fetch, family = poisson, data = sw)
 coef.est coef.se
(Intercept) -1.89 0.46
log(1 + urchin) -1.91 0.09
 fjord 0.35 0.02
 land 0.75 0.30
 fetch 0.01 0.01

 n = 103, k = 5
 residual deviance = 491.8, null deviance = 1407.1 (difference = 915.3)
Residual Plot

```r
> print(xyplot(residuals(fit1.glm) ~ fitted(fit1.glm),
+ pch = 16))
```

![Residual Plot](image)
Biological count data often has an excess of zeros relative to what a standard model predicts.

We can examine this by simulation and compare the number of zeros in simulated data to the number in the real data.

We can do this by generating Poisson random variables with means as the fitted values.
Checking 0 probability

```r
> count0 = function(x) {
+     return(sum(x == 0))
+ }
> with(sw, count0(seaweed))

[1] 55

> n = nrow(sw)
> mu = fitted(fit1.glm)
> fake1.0 = replicate(1000, count0(rpois(n, mu)))
```
Comparing Fake and Real Data

Checking Probability of 0
Observations

- Notice that the actual data set has 55 zeros, but the fake simulated data sets never have more than 50 zeros.
- We can try to fit a model with an overdispersion parameter.
- An alternative would be to fit a logistic regression model for the zeros and fit a different model for the positive outcomes.
- We can use simulation to see if the overdispersed-Poisson model produces as many zeros as we observe in the real data.
An example of the overdispersed-Poisson model is the *negative binomial distribution*.

We can parameterize this distribution with a parameter μ which is the mean and α which is a shape parameter.

In R we estimate μ with the fitted values and $\alpha = \mu / (w - 1)$ where w is the overdispersion parameter.

The function `rnbinoem()` generates random variables with arguments `mu` and `size` for α.

Comparing Fake and Real Data

Checking Probability of 0
Fitting an Over-dispersed Poisson Regression

\[
\text{fit2.glm} = \text{glm}\left(\text{seaweed} \sim \log(1 + \text{urchin}) + \text{fjord} + \text{land} + \text{fetch}, \text{data} = \text{sw}, \text{family} = \text{quasipoisson}\right)
\]

\[
\text{display(fit2.glm)}
\]

\[
\text{glm(formula} = \text{seaweed} \sim \log(1 + \text{urchin}) + \text{fjord} + \text{land} + \text{fetch, family} = \text{quasipoisson, data} = \text{sw)}
\]

coef.est coef.se
(Intercept) -1.89 1.27
log(1 + urchin) -1.91 0.25
fjord 0.35 0.06
land 0.75 0.81
fetch 0.01 0.03

n = 103, k = 5
residual deviance = 491.8, null deviance = 1407.1 (difference = 915.3)
overdispersion parameter = 7.4
Checking 0 probability

```r
> with(sw, count0(seaweed))
[1] 55

> n = nrow(sw)
> mu = fitted(fit2.glm)
> alpha = mu/(7.4 - 1)
> fake2.0 = replicate(1000, count0(rnbinom(n, mu = mu,
+ size = alpha)))
```
Checking 0 probability

Comparing Fake and Real Data

Checking Probability of 0
Observations

- The actual number of zeros, 55, is fairly typical for this distribution.
- We could also test other aspects of the data to see if the simulated data is similar to the actual data.