Estimation and Prediction

Bret Larget

Departments of Botany and of Statistics
University of Wisconsin—Madison

January 30, 2007

The Big Picture

- The least squares regression line is an estimate of the true relationship between the explanatory variable x and the response variable y.
- The accuracy of the estimate is not the same at all x.
- The estimate of the mean $\mu_x = E(y \mid x)$ is less variable than a prediction of y for an individual with a given x.
- Estimation accounts for uncertainty in the regression line.
- Prediction accounts for uncertainty in the regression line and in the individual observation.
Standard Error

The point estimate of response \(y \) at explanatory variable \(x \) for both estimation (\(\hat{\mu}_x \)) and prediction (\(\hat{y} \)) is \(\hat{\beta}_0 + \hat{\beta}_1 x \).

The standard error for estimation of \(\mu_x \) at \(x \) is

\[
SE(\hat{\mu}_x) = \hat{\sigma} \sqrt{\frac{1}{n} + \frac{(x - \bar{x})^2}{\sum_{i=1}^{n}(x_i - \bar{x})^2}}
\]

where \(\hat{\sigma} = \sqrt{\frac{1}{n-2} \sum_{i=1}^{n}(y_i - \hat{y}_i)^2} \).

The standard error for prediction of \(y \) at \(x \) is

\[
SE(\hat{y}) = \hat{\sigma} \sqrt{1 + \frac{1}{n} + \frac{(x - \bar{x})^2}{\sum_{i=1}^{n}(x_i - \bar{x})^2}}
\]

Remarks

\[
SE(\hat{\mu}_x) = \hat{\sigma} \sqrt{\frac{1}{n} + \frac{(x - \bar{x})^2}{\sum_{i=1}^{n}(x_i - \bar{x})^2}} \quad SE(\hat{y}) = \hat{\sigma} \sqrt{1 + \frac{1}{n} + \frac{(x - \bar{x})^2}{\sum_{i=1}^{n}(x_i - \bar{x})^2}}
\]

- Notice the only difference is that \(SE(\hat{y}) \) has an extra 1.
- As the sample size \(n \) goes to infinity, \(SE(\hat{\mu}_x) \) tends to 0 but \(SE(\hat{y}) \) tends to \(\sigma \).
- For fixed \(n \), both standard errors are smaller when the \(x \) values are more spread out.
- Estimation/prediction near \(\bar{x} \) is more accurate than further away.
The predict function in R is used for both estimation and prediction. The first argument is a linear model object, created with R function \texttt{lm}. The second argument is a data frame holding the explanatory variable values where estimation/prediction is desired. The third argument specifies the type of standard error, \texttt{none}, confidence, or prediction.

Reconsider the soil phosphorous data.

\begin{table}[h]
\centering
\begin{tabular}{c c c c c c c c}
soilP & 1 & 4 & 5 & 9 & 13 & 11 & 23 & 23 & 28 \\
plantP & 64 & 71 & 54 & 81 & 93 & 76 & 77 & 95 & 109 \\
\end{tabular}
\end{table}

Consider estimates at $x = 10$ (near the mean $\bar{x} = 13$) and $x = 25$ (further away).

\begin{verbatim}
> soilP = c(1, 4, 5, 9, 13, 11, 23, 23, 28)
> plantP = c(64, 71, 54, 81, 93, 76, 77, 95, 109)
> x = data.frame(soilP = c(10, 25))
> phos.lm = lm(plantP ~ soilP)
> predict(phos.lm, x, interval = "none")

 fit lwr upr
1 75.74932 66.86786 84.63078
2 97.00272 82.98577 111.01968

> predict(phos.lm, x, interval = "confidence")

 fit lwr upr
1 75.74932 66.86786 84.63078
2 97.00272 82.98577 111.01968

> predict(phos.lm, x, interval = "prediction")

 fit lwr upr
1 75.74932 48.94919 102.5494
2 97.00272 68.09180 125.9136
\end{verbatim}