Welcome to Statistics 572!

- Introduce self and TAs.
 - Bret Larget
 - Heather Brazeau
 - Yali Wang
- Comment on syllabus.
 - Textbook
 - Web for notes and grades (print notes before lecture)
 - Objectives
 - Computing (go R!)
 - Assignments (late policy)
 - Exams (save dates)
 - Grading
 - Academic honesty
 - Discussion sections (attend the one you want)

The Big Picture

- A statistical approach to data analysis can lend insight to biological understanding of a wide variety of problems.
- In a statistical approach, measurable variables are treated as realizations from a model that relates biological meaningful parameters and stochastic sources of variation.
- No model accounts for all aspects of the underlying biology, but an appropriately selected model can be very useful.
- Many data analysis problems arising from the biological sciences are appropriate for linear and generalized linear models, a rich family of possible models.

Variables

- Typically, one variable of interest is modeled as a response variable which is related to one or more explanatory variables.
- Variables can be categorized as quantitative or categorical.
- Quantitative variables are typically either measured on a continuous scale or are discrete, variables that are counts.
- The appropriate choice of model is determined in part by the types of the response and explanatory variables.
- A linear combination of the variables X_1, \ldots, X_k takes the form
 $$\beta_1 X_1 + \beta_2 X_2 + \cdots + \beta_k X_k$$
- Linear and generalized linear models include linear combinations of explanatory variables.
Linear Models and Generalized Linear Models

Examples of Linear Models

- **Simple Linear Regression.**
 - response variable: continuous quantitative variable
 - explanatory variable: one quantitative variable
 - error structure: normal distribution
 - model: \(y_i = \beta_0 + \beta_1 x_i + e_i, \quad e_i \sim N(0, \sigma^2) \)
 - example: response variable is phosphorous concentration in plant tissue, explanatory variable is phosphorous concentration in the soil.

- **Multiple Linear Regression.**
 - response variable: continuous quantitative variable
 - explanatory variables: more than one quantitative variables
 - error structure: normal distribution
 - model: \(y_i = \beta_0 + \beta_1 x_{i1} + \cdots + \beta_k x_{ki} + e_i, \quad e_i \sim N(0, \sigma^2) \)
 - example: response variable is soybean yield, explanatory variables are hours of daylight and amount of nitrogen.

- **One-way ANOVA.**
 - response variable: continuous quantitative variable
 - explanatory variable: one categorical variable
 - error structure: normal distribution
 - model: \(y_{ij} = \alpha_i + e_{ij}, \quad e_{ij} \sim N(0, \sigma^2) \)
 - example: response variable is milk yield explanatory variable is diet (four treatments).

- **Multi-way ANOVA.**
 - response variable: continuous quantitative variable
 - explanatory variables: more than one categorical variables
 - error structure: normal distribution
 - model: \(y_{ijk} = \alpha_i + \beta_j + (\alpha \beta)_{ij} + e_{ijk}, \quad e_{ijk} \sim N(0, \sigma^2) \)
 - example: response variable nitrogen level in manure, explanatory variables are diet treatment, period, and interaction.

- **Linear models with both types.**
 - response variable: continuous quantitative variable
 - explanatory variables: both quantitative and categorical
 - error structure: normal distribution
 - model: \(y_{ij} = \beta_0 + \beta_1 x_{ij} + \alpha_i + e_{ij}, \quad e_{ij} \sim N(0, \sigma^2) \)
 - example: response variable is milk yield, explanatory variables are diet (four treatments) and days in milk.

- **Polynomial regression.**
 - response variable: continuous quantitative variable
 - explanatory variables: single quantitative explanatory variable
 - error structure: normal distribution
 - model: \(y_i = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \beta_3 x_i^3 + e_i, \quad e_i \sim N(0, \sigma^2) \)
 - example: response variable is disease area, explanatory variable is age.

- **Mixed models.**
 - response variable: continuous quantitative variable
 - explanatory variables: variables of both fixed and random effect.
 - error structure: normal distribution
 - model: \(y_{ij} = \beta_0 + \beta_1 x_{ij} + a_i + e_{ij}, \quad e_{ij} \sim N(0, \sigma^2), a_i \sim N(0, \sigma_a^2) \)
 - example: response variable is percentage cover of vegetation, site is modeled as a random effect, quantitative variables include soil moisture.

- **Repeated measures.**
 - response variable: continuous quantitative variable
 - explanatory variables: one or more including random effect for individual
 - error structure: normal distribution
 - model: \(y_{ij} = \beta_0 + \beta_1 x_{ij} + e_{ij}, \quad e_{ij} \sim N(0, \sigma^2) \)
 - example: response variable is hormone concentration, explanatory variables include individual and day.
Examples of Generalized Linear Models

- **Logistic Regression.**—
 - response variable: categorical variable with two levels
 - explanatory variables: one or more
 - error structure: binomial
 - model: \(P \{ y_i = 1 \} \) is a function of \(\beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} \).
 - example: response variable is seed germination, explanatory variables include temperature and treatment.

- **Poisson regression.**—
 - response variable: non-negative integer-valued variable
 - explanatory variables: one or more
 - error structure: Poisson
 - model: \(P \{ y_i = k \} \) is a function of \(\beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} \).
 - example: response variable is number of seeds produced, explanatory variables include treatment and light intensity.

Data request

- I will present each type of model with an example and data.
- These case studies will be more interesting if they are related to genuine research problems.
- If you or someone in your lab has data that falls into the scope of these models, and you are willing/able to share, please contact me.