Descriptive Statistics and Basic Concepts (about 2 lectures)
 Graphical and tabular displays
 Summary statistics
 Motivation of some main ideas in statistical inference
 The role of exploratory analysis
 Population and sample

Distributional models and probability (about 5 lectures)
 Elementary probability
 Elementary properties of random variables
 The meaning of a distributional model
 Binomial distribution
 Normal distribution
 Central limit theorem
 Normal approximation to the binomial
 Sampling distributions for sample mean and sample variance

One-sample normal inference (about 6 lectures)
 The logic underlying testing
 Testing for mean and variance
 Confidence intervals for the mean and variance
 Inference for proportions
 Power and determination of sample size
 Underlying assumptions, including detection, corrective action, and robustness

Two-sample inference (about 4 lectures)
 Design aspects
 Inference for means with paired samples
 Inference for means with independent samples
 Inference for proportions
 Inference for variances
 Underlying assumptions
 Nonparametric approaches

One-way Analysis of Variance (about 4 lectures)
 Basic ideas and procedures
 Fixed effects model and interpretation
 Underlying assumptions
 Contrasts and multiple comparisons

Simple linear regression and correlation (about 4 lectures)
 Method of least squares
 Models and interpretation
 Inference and prediction for regression
 Underlying assumptions and analysis of residuals
 Correlation

Goodness-of-fit (about 2 lectures, as time permits)
 Basic ideas
 One and two-way tables

Stat/For/Hort 572 will be a continuation of 571. Primary emphasis will be placed on more advanced regression material, including multiple regression and model fitting, and on experimental design and additional topics in analysis of variance, including multi-way ANOVA, nested models, random effects, and the relationship between regression and analysis of variance. Substantial effort will be devoted to the role of assumptions in all analyses. Assignments will include analysis of data incorporating many of the complexities found in real experimental studies.