Nonparametric Methods for Two Samples

An overview

- In the independent two-sample t-test, we assume normality, independence, and equal variances.
- This t-test is robust against nonnormality, but is sensitive to dependence.
- If \(n_1 \) is close to \(n_2 \), then the test is moderately robust against unequal variance (\(\sigma_1^2 \neq \sigma_2^2 \)). But if \(n_1 \) and \(n_2 \) are quite different (e.g. differ by a ratio of 3 or more), then the test is much less robust.
- How to determine whether the equal variance assumption is appropriate?
- Under normality, we can compare \(\sigma_1^2 \) and \(\sigma_2^2 \) using \(S_1^2 \) and \(S_2^2 \), but such tests are very sensitive to nonnormality. Thus we avoid using them.
- Instead we consider a nonparametric test called Levene’s test for comparing two variances, which does not assume normality while still assuming independence.
- Later on we will also consider nonparametric tests for comparing two means.

Levene’s test

Consider two independent samples \(Y_1 \) and \(Y_2 \):

- Test \(H_0 : \sigma_1^2 = \sigma_2^2 \) vs \(H_A : \sigma_1^2 \neq \sigma_2^2 \).
- Note that \(s_1^2 = 67.58, s_2^2 = 5.30 \).
- The main idea of Levene’s test is to turn testing for equal variances using the original data into testing for equal means using modified data.
- Suppose normality and independence, if Levene’s test gives a small p-value (< 0.01), then we use an approximate test for \(H_0 : \mu_1 = \mu_2 \) vs \(H_A : \mu_1 \neq \mu_2 \). See Section 10.3.2 of the bluebook.

Mann-Whitney test

We consider a nonparametric Mann-Whitney test (aka Wilcoxon test) for independent two samples, although analogous tests are possible for paired two samples.
- We relax the distribution assumption, but continue to assume independence.
- The main idea is to base the test on the ranks of obs.
- Consider two independent samples \(Y_1 \) and \(Y_2 \):

\[

\begin{align*}
\text{Sample 1:} & \quad 4, 8, 10, 23 \\
\text{Sample 2:} & \quad 1, 2, 4, 4, 7
\end{align*}
\]

Test \(H_0 : \mu_1 = \mu_2 \) vs \(H_A : \mu_1 \neq \mu_2 \). See Section 10.3.2 of the bluebook.
Nonparametric Methods for Two Samples

Mann-Whitney test

(1) Rank the obs

<table>
<thead>
<tr>
<th>rank</th>
<th>obs</th>
<th>sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>14</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>20</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>21</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>22</td>
<td>1</td>
</tr>
</tbody>
</table>

(2) Compute the sum of ranks for each sample. Here RS(1) = 3 + 5 + 7 + 8 = 23 and RS(2) = 1 + 2 + 4 + 6 = 13.

(3) Under H_0, the means are equal and thus the rank sums should be about equal. To compute a p-value, we list all possible ordering of 8 obs and find the rank sum of each possibility. Then p-value is $2 \times P(RS(2) \leq 13)$. Here

$$P(RS(2) \leq 13) = P(RS(2) = 10) + P(RS(2) = 11) + P(RS(2) = 12) + P(RS(2) = 13) = \frac{7}{70} = 0.1$$

and thus p-value = 0.2.

Nonparametric Methods for Two Samples

Mann-Whitney test

Recorded below are the longevity of two breeds of dogs.

<table>
<thead>
<tr>
<th>Breed A</th>
<th>obs</th>
<th>rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.4</td>
<td>9</td>
<td>11.6</td>
</tr>
<tr>
<td>15.9</td>
<td>14</td>
<td>9.7</td>
</tr>
<tr>
<td>11.7</td>
<td>8</td>
<td>8.8</td>
</tr>
<tr>
<td>14.3</td>
<td>11.5</td>
<td>14.3</td>
</tr>
<tr>
<td>10.6</td>
<td>6</td>
<td>9.8</td>
</tr>
<tr>
<td>8.1</td>
<td>2</td>
<td>7.7</td>
</tr>
<tr>
<td>13.2</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>16.6</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>19.3</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>
| 15.1 | 13 | n_2 = 10

<table>
<thead>
<tr>
<th>Breed B</th>
<th>obs</th>
<th>rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.5</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>9.8</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>7.7</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

n_1 = 6

$T^* = 31.5$

Nonparametric Methods for Two Samples

Mann-Whitney test

• If we had observed 10, then p-value = $2 \times \frac{1}{70} = 0.0286$.
• If we had observed 11, then p-value = $2 \times \frac{2}{70} = 0.0571$.
• Thus for this sample size, we can only reject at 5% if the observed rank sum is 10.
• Table A10 gives the cut-off values for different sample sizes. For $n_1 = n_2 = 4$ and $\alpha = 0.05$, we can only reject H_0 if the observed rank sum is 10.

Remarks

• If there are ties, Table A10 gives approximation only.
• The test does not work well if the variances are very different.
• It is not easy to extend the idea to more complex types of data. There is no CI.
• For paired two samples, consider using signed rank test.
• See p.251 of the bluebook for a decision tree.
Nonparametric Methods for Two Samples

Key R commands

```r
# Levene's test
> leven.test = function(data1, data2){
+ leven.trans = function(data){
+ a = sort(apply(data, 1, median, trim = 0.25))
+ if (length(a)%%2)
+ a[a!=0|duplicated(a)]
+ else a
+ }
+ t.test(leven.trans(data1), leven.trans(data2), var.equal=T)
+ }
> t.test(leven.trans(data1), leven.trans(data2), var.equal=T)
```

```
W = 13, p-value = 0.2
> wilcox.test(samp1, samp2)
> # W = 23-10 = 13
> samp2 = c(20, 9, 12, 10)
> # Mann-Whitney test example
> t = 1.0331, df = 6, p-value = 0.3414
```

```
data: leven.trans(data1) and leven.trans(data2)
> levene.test(y1, y2)
> y2 = c(1,2,4,4,7)
> # Levene's test
```

Comparing Two Proportions

Test procedure

Consider two binomial distributions \(Y_1 \sim B(n_1, p_1), Y_2 \sim B(n_2, p_2) \), and \(Y_1, Y_2 \) are independent. We want to test

\[
H_0: p_1 = p_2 \quad \text{vs} \quad H_A: p_1 \neq p_2
\]

- Use the point estimator \(\hat{p}_1 - \hat{p}_2 \), where \(\hat{p}_1 = Y_1/n_1, \hat{p}_2 = Y_2/n_2 \) are the sample proportions.

- Note that \(\mu_{\hat{p}_1-\hat{p}_2} = E(\hat{p}_1 - \hat{p}_2) = p_1 - p_2 \) and \(\sigma_{\hat{p}_1-\hat{p}_2}^2 = Var(\hat{p}_1 - \hat{p}_2) = p_1(1-p_1)/n_1 + p_2(1-p_2)/n_2 \).

- Under \(H_0: p_1 = p_2 = p \), \(\mu_{\hat{p}_1-\hat{p}_2} = 0 \) and \(\sigma_{\hat{p}_1-\hat{p}_2}^2 = p(1-p)/(n_1+n_2) \).

- Under \(H_0 \), the test statistic is approximately normal,

\[
Z = \frac{\hat{p}_1 - \hat{p}_2 - 0}{\sqrt{p(1-p)/(n_1+n_2)}} \approx N(0,1)
\]

- But we do not know \(p \) and thus estimate it by

\[
\hat{p} = \frac{Y_1+Y_2}{n_1+n_2}
\]

- Thus the test statistic is \(Z = \frac{\hat{p}_1 - \hat{p}_2 - 0}{\sqrt{\hat{p}(1-\hat{p})(1/n_1+1/n_2)}} \approx N(0,1) \) under \(H_0 \).

Comparing Two Proportions

Potato cure rate example

A plant pathologist is interested in comparing the effectiveness of two fungicide used on infested potato plants. Let \(Y_1 \) denote the number of plants cured using fungicide A among \(n_1 \) plants and let \(Y_2 \) denote the number of plants cured using fungicide B among \(n_2 \) plants. Assume that \(Y_1 \sim B(n_1, p_1) \) and \(Y_2 \sim B(n_2, p_2) \), where \(p_1 \) is the cure rate of fungicide A and \(p_2 \) is the cure rate of fungicide B. Suppose the obs are \(n_1 = 105, p_1 = 0.71 \) for fungicide A and \(n_2 = 87, p_2 = 0.571 \) for fungicide B. Test \(H_0: p_1 = p_2 \) vs \(H_A: p_1 \neq p_2 \).

- Here \(\hat{p}_1 = 71/105 = 0.676, \hat{p}_2 = 45/87 = 0.517 \), and the pooled estimate of cure rate is

\[
\hat{p} = \frac{71 + 45}{105 + 87} = 0.604
\]

- Thus the observed test statistic is

\[
z = \frac{(0.676 - 0.517) - 0}{\sqrt{0.604 \times 0.396 \times (1/105 + 1/87)}} = 2.24
\]

- Compared to \(Z \), the p-value is \(2 \times P(Z \geq 2.24) = 0.025 \).

- Reject \(H_0 \) at the 5% level. There is moderate evidence against \(H_0 \).
Comparing Two Proportions

Remarks

• For constructing a \((1 - \alpha)\) CI for \(p_1 - p_2\), there is no \(H_0\).
 Since \(\text{Var}(\hat{p}_1 - \hat{p}_2) = p_1(1-p_1)/n_1 + p_2(1-p_2)/n_2\), estimate by
 \[
 \frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}
 \]
 and the CI is
 \[
 \hat{p}_1 - \hat{p}_2 - z_{\alpha/2} \sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}} \leq p_1 - p_2 \leq \hat{p}_1 - \hat{p}_2 + z_{\alpha/2} \sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}
 \]

• In the potato cure rate example, a 95% CI for \(p_1 - p_2\) is
 \[(0.676 - 0.517) \pm 1.96 \times \sqrt{\frac{0.676 \times 0.324}{105} + \frac{0.517 \times 0.483}{87}}\]
 which is 0.159 ± 0.138 or [0.021, 0.297].

• In constructing CI for \(p_1 - p_2\), normal approximation works well if
 \(n_1 \hat{p}_1 \geq 5, n_1(1 - \hat{p}_1) \geq 5, n_2 \hat{p}_2 \geq 5, n_2(1 - \hat{p}_2) \geq 5\).

• In testing \(H_0: p_1 = p_2\), normal approximation works well if
 \(n_1 \hat{p} \geq 5, n_1(1 - \hat{p}) \geq 5, n_2 \hat{p} \geq 5, n_2(1 - \hat{p}) \geq 5\).

\begin{verbatim}
> # potato cure rate example
> y1 = 71
> n1 = 105
> y2 = 45
> n2 = 87
> p1 = y1/n1
> p2 = y2/n2
> poolp = (y1+y2)/(n1+n2)
> poolp
[1] 0.6041667
> z.value = (p1-p2)/sqrt(poolp*(1-poolp)*(1/n1+1/n2))
> z.value
[1] 2.241956
> # p-value
> 2*pnorm(z.value, lower.tail=F)
[1] 0.02496419
> # 95% CI
> alpha = 0.05
> qnorm(alpha/2, lower.tail=F)*sqrt(p1*(1-p1)/n1+p2*(1-p2)/n2)
[1] 0.1379716
> c(p1-p2-qnorm(alpha/2, lower.tail=F)*sqrt(p1*(1-p1)/n1+p2*(1-p2)/n2), + p1-p2+qnorm(alpha/2, lower.tail=F)*sqrt(p1*(1-p1)/n1+p2*(1-p2)/n2))
[1] 0.02097751 0.29692068
>
> prop.test(c(71, 45), c(105, 87), correct=F)
2-sample test for equality of proportions without continuity correction
data: c(71, 45) out of c(105, 87)
X-squared = 5.0264, df = 1, p-value = 0.02496
alternative hypothesis: two.sided
95 percent confidence interval:
 0.02097751 0.29692068
sample estimates:
prop 1 prop 2
0.6761905 0.5172414

> prop.test(c(71, 45), c(105, 87))
2-sample test for equality of proportions with continuity correction
data: c(71, 45) out of c(105, 87)
X-squared = 4.3837, df = 1, p-value = 0.03628
alternative hypothesis: two.sided
95 percent confidence interval:
 0.01046848 0.30742971
sample estimates:
prop 1 prop 2
0.6761905 0.5172414
\end{verbatim}

Comparing Two Proportions

Key R commands

\begin{verbatim}
> prop.test(c(71, 45), c(105, 87))
2-sample test for equality of proportions with continuity correction
data: c(71, 45) out of c(105, 87)
X-squared = 4.3837, df = 1, p-value = 0.03628
alternative hypothesis: two.sided
95 percent confidence interval:
 0.01046848 0.30742971
sample estimates:
prop 1 prop 2
0.6761905 0.5172414
\end{verbatim}

One-way ANOVA

An overview

• So far we have learned statistical methods for comparing two trts.

• One-way analysis of variance (ANOVA) provides us with a way to compare more than two trts.

• One-way ANOVA can be viewed as an extension of the independent two sample case to independent multiple samples.

• The key idea is to break up the sum of squares
 \[\sum (Y_i - \overline{Y})^2 \]

• First reconsider the independent two-sample case and then generalize the idea to independent multiple samples.
One-way ANOVA

Independent two samples

- Consider the following independent two samples:
 \[X: 4, 12, 8 \]
 \[Y: 17, 8, 11 \]

- The summary statistics are
 \[\bar{x} = 8, \quad s_x^2 = 16, \quad \sum_{i=1}^{3} (x_i - \bar{x})^2 = 32 \]
 \[\bar{y} = 12, \quad s_y^2 = 21, \quad \sum_{i=1}^{3} (y_i - \bar{y})^2 = 42 \]

- For testing \(H_0: \mu_1 = \mu_2 \) vs \(H_A: \mu_1 \neq \mu_2 \), use t-test
 \[t = \frac{(12 - 8) - 0}{\sqrt{18.5(1/3 + 1/3)}} = 1.14 \]
 on df = 4. The p-value \(2 \times P(T_4 \geq 1.14) \) is greater than 0.10. Thus do not reject \(H_0 \) at 5% and there is no evidence against \(H_0 \).

- Now we will examine this using the idea of breaking up sums of squares.

One-way ANOVA

Sums of squares (SS)

- Total SS: Pretend that all obs are from a single population. The overall mean is
 \[\frac{4 + 12 + 8 + 17 + 8 + 11}{6} = 10 \]
 and the SS Total is
 \[(4 - 10)^2 + (12 - 10)^2 + (8 - 10)^2 + (17 - 10)^2 + (8 - 10)^2 + (11 - 10)^2 = 98 \]
 on df = 5.

- Treatment SS: How much of the total SS can be attributed to the differences between the two trt groups? Replace each obs by its group mean.
 \[X: 8, 8, 8 \]
 \[Y: 12, 12, 12 \]
 The overall mean here is
 \[\frac{8 + 8 + 8 + 12 + 12 + 12}{6} = 10 \]
 and the SS Trt is
 \[(8 - 10)^2 + (8 - 10)^2 + (12 - 10)^2 + (12 - 10)^2 + (12 - 10)^2 + (12 - 10)^2 = 24 \]
 on df = 1.

- Error SS: How much of the total SS can be attributed to the differences within each trt group? The SS Error is
 \[(4 - 8)^2 + (12 - 8)^2 + (8 - 8)^2 + (17 - 12)^2 + (8 - 12)^2 + (11 - 12)^2 = 74 \]
 on df = 4.

- Note that SS Error/df = 74/4 = 18.5 = \(s_p^2 \).

- Note also that
 \[\text{SS Total} = \text{SS Trt} + \text{SS Error} \quad (98 = 24 + 74) \]
 \[\text{df Total} = \text{df Trt} + \text{df Error} \quad (5 = 1 + 4) \]

- An ANOVA table summarizes the information.

<table>
<thead>
<tr>
<th>Source</th>
<th>df</th>
<th>SS</th>
<th>MS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trt</td>
<td>1</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>Error</td>
<td>4</td>
<td>74</td>
<td>18.5</td>
</tr>
<tr>
<td>Total</td>
<td>5</td>
<td>98</td>
<td></td>
</tr>
</tbody>
</table>

- Here MS = SS/df.

One-way ANOVA

F-test

- \(H_0: \mu_1 = \mu_2 \) vs \(H_A: \mu_1 \neq \mu_2 \)
- A useful fact is that, under \(H_0 \), the test statistic is:
 \[F = \frac{\text{MSTrt}}{\text{MSErr}} \sim F_{\text{dfTrt}, \text{dfError}} \]
- In the example, the observed \(f = 24/18.5 = 1.30 \).
- Compare this to an F-distribution with 1 df in the numerator and 4 df in the denominator using Table D. The (one-sided) p-value \(P(F_{1,4} \geq 1.30) \) is greater than 0.10. Do not reject \(H_0 \) at the 10% level. There is no evidence against \(H_0 \).
- Note that a small difference between the two trt means relative to variability is associated with a small \(f \), a large p-value, and accepting \(H_0 \), whereas a large difference between the two trt means relative to variability is associated with a large \(f \), a small p-value, and rejecting \(H_0 \).
- Note that \(f = 1.30 = (1.14)^2 = t^2 \). That is \(f = t^2 \), but only when the df in the numerator is 1.
- Note that the p-value is one-tailed, even though \(H_A \) is two-sided.
One-way ANOVA

A recap

In the simple example above, there are 2 trts and 3 obs/trt. The overall mean is 10,

\[\text{SS Total} = \sum_{i=1}^{3} (x_i - 10)^2 + \sum_{i=1}^{3} (y_i - 10)^2 = 98 \]

\[\text{SS Trt} = 3 \times (\bar{x} - 10)^2 + 3 \times (\bar{y} - 10)^2 = 24 \]

\[\text{SS Error} = \sum_{i=1}^{3} (x_i - 8)^2 + \sum_{i=1}^{3} (y_i - 12)^2 = 74 \]

with df = 5, 1, and 4, respectively.

One-way ANOVA

Generalization to \(k \) independent samples

- Consider \(k \) trts and \(n_i \) obs for the \(i^{th} \) trt.
- Let \(y_{ij} \) denote the \(j^{th} \) obs in the \(i^{th} \) trt group.
- Tabulate the obs as follows.

<table>
<thead>
<tr>
<th>Trt</th>
<th>1</th>
<th>2</th>
<th>\cdots</th>
<th>(k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obs</td>
<td>(y_{11})</td>
<td>(y_{12})</td>
<td>\cdots</td>
<td>(y_{1k})</td>
</tr>
<tr>
<td>(y_{21})</td>
<td>(y_{22})</td>
<td>\cdots</td>
<td>(y_{2k})</td>
<td></td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\ddots</td>
<td>\vdots</td>
<td></td>
</tr>
<tr>
<td>(y_{n_{11}})</td>
<td>(y_{n_{12}})</td>
<td>\cdots</td>
<td>(y_{n_{1k}})</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sum</th>
<th>(\bar{y}_1)</th>
<th>(\bar{y}_2)</th>
<th>\cdots</th>
<th>(\bar{y}_k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>(\bar{y}_1)</td>
<td>(\bar{y}_2)</td>
<td>\cdots</td>
<td>(\bar{y}_k)</td>
</tr>
</tbody>
</table>

- Sum for the \(i^{th} \) trt: \(y_i = \sum_{j=1}^{n_i} y_{ij} \)
- Mean for the \(i^{th} \) trt: \(\bar{y}_i = y_i / n_i \)
- Grand sum: \(y_+ = \sum_{i=1}^{k} \sum_{j=1}^{n_i} y_{ij} = \sum_{i=1}^{k} y_i \)
- Grand mean: \(\bar{y}_+ = y_+ / N \) where the total \# of obs is:

\[N = \sum_{i=1}^{k} n_i = n_1 + n_2 + \cdots + n_k. \]

One-way ANOVA

Fish length example

- Consider the length of fish (in inch) that are subject to one of three types of diet, with seven observations per diet group.

The raw data are:

\(Y_1 \)	18.2	20.1	17.6	16.8	18.8	19.7	19.1
\(Y_2 \)	17.4	18.7	19.1	16.4	15.9	18.4	17.7
\(Y_3 \)	15.2	18.8	17.7	16.5	15.9	17.1	16.7

- A stem and leaf display of these data looks like:

<table>
<thead>
<tr>
<th>(Y_1)</th>
<th>(Y_2)</th>
<th>(Y_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.5</td>
<td>9.5</td>
<td>29.5</td>
</tr>
<tr>
<td>16.5</td>
<td>8.5</td>
<td>57.5</td>
</tr>
<tr>
<td>17.5</td>
<td>6.5</td>
<td>47.5</td>
</tr>
<tr>
<td>18.5</td>
<td>28.5</td>
<td>74.5</td>
</tr>
<tr>
<td>19.5</td>
<td>71.5</td>
<td>1</td>
</tr>
<tr>
<td>20.5</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

- Summary statistics are:

\[y_1 = 130.3 \quad y_2 = 186.1 \quad s_1^2 = 1.358 \quad n_1 = 7 \]
\[y_2 = 123.6 \quad y_3 = 17.66 \quad s_2^2 = 1.410 \quad n_2 = 7 \]
\[y_3 = 117.9 \quad y_4 = 16.84 \quad s_3^2 = 1.393 \quad n_3 = 7 \]
\[y_+ = 37.18 \quad \bar{y}_+ = 17.70 \quad N = 21 \]
One-way ANOVA

Fish length example

- The sums of squares are:
 \[\text{SSTotal} = \sum_{i=1}^{3} \sum_{j=1}^{7} (y_{ij})^2 - \frac{(y_{..})^2}{N} \]
 \[= 6618.60 - 6582.63 = 35.97 \]
 \[\text{SSTrt} = \sum_{i=1}^{3} \frac{\text{SSTrt}_i}{N_i} \]
 \[= \frac{1}{7}[(130.3)^2 + (123.6)^2 + (117.9)^2] - 6582.63 \]
 \[= 11.01 \]
 \[\text{SSErr} = \text{SSTot} - \text{SSTrt} = 35.97 - 11.01 = 24.96 \]
- Or \[\text{SSErr} = 6s_1^2 + 6s_2^2 + 6s_3^2 = 24.96 \]
- The corresponding ANOVA table is:

<table>
<thead>
<tr>
<th>Source</th>
<th>df</th>
<th>SS</th>
<th>MS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trt</td>
<td>2</td>
<td>11.01</td>
<td>5.505</td>
</tr>
<tr>
<td>Error</td>
<td>18</td>
<td>24.96</td>
<td>1.387</td>
</tr>
<tr>
<td>Total</td>
<td>20</td>
<td>35.97</td>
<td></td>
</tr>
</tbody>
</table>

217

One-way ANOVA

Hypotheses

- Note that the MS for Error computed above is the same as the pooled estimate of variance, \(s^2_p \).
- The null hypothesis \(H_0 \): “all population means are equal” versus the alternative hypothesis \(H_A \): “not all population means are equal”.
- The observed test statistic is:
 \[f = \frac{\text{MSTrt}}{\text{MSErr}} = \frac{5.505}{1.387} = 3.97 \]
- Compare this with \(F_{2,18} \) from Table D: at 5% \(f_{2,18} = 3.55 \), and at 1% \(f_{2,18} = 6.01 \), so for our data 0.01 < \(p \)-value < 0.05.
- Reject \(H_0 \) at the 5% level. There is moderate evidence against \(H_0 \). That is, there is moderate evidence that there is a diet effect on the fish length.

218

One-way ANOVA

Assumptions

1. For each trt, a random sample \(Y_{ij} \sim N(\mu_i, \sigma_i^2) \).
2. Equal variances \(\sigma_1^2 = \sigma_2^2 = \cdots = \sigma_k^2 \).
3. Independent samples across trts.

That is, independence, normality, and equal variances.

A unified model

\[Y_{ij} = \mu_i + e_{ij} \]

where \(e_{ij} \) are iid \(N(0, \sigma^2) \). Let

\[\mu = \frac{1}{k} \sum_{i=1}^{k} \mu_i, \quad \alpha_i = \mu_i - \mu. \]

Then equivalently the model is:

\[Y_{ij} = \mu + \alpha_i + e_{ij} \]

where \(e_{ij} \) are iid \(N(0, \sigma^2) \).

Parameter estimation

- Estimate \(\sigma^2 \) by \(S^2_p \).
- Estimate \(\mu_i \) by \(\bar{Y}_i \).
- Or estimate \(\mu \) by \(\bar{Y} \) and estimate \(\alpha_i \) by \(\bar{Y}_i - \bar{Y} \).
- We will discuss inference of parameters later on.
One-way ANOVA

A brief review

<table>
<thead>
<tr>
<th>Data's</th>
<th>One-Sample Inference</th>
<th>Two-Sample Inference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>$H_0: \mu = \mu_0$</td>
<td>Paired $H_0: \mu_D = 0$, CI for μ_D (\bar{y} or $Y_{x=1}$)</td>
</tr>
<tr>
<td></td>
<td>CI for μ</td>
<td>2 ind samples $H_0: \mu_1 = \mu_2$ for $\mu_1 - \mu_2$ ($\bar{y}_{x=1,x=2}$)</td>
</tr>
<tr>
<td></td>
<td>σ^2 is known (\bar{y}) or unknown (χ^2)</td>
<td>k ind samples $H_0: \mu_1 = \mu_2 = \cdots = \mu_k$ ($\bar{y}_{x=1,x=2}$)</td>
</tr>
<tr>
<td></td>
<td>$H_0: \sigma^2 = \sigma^2_0$, CI for σ^2 (χ^2)</td>
<td>$H_0: \sigma^2 = \sigma^2_0$, CI for σ^2 (χ^2)</td>
</tr>
<tr>
<td>Arbitrary</td>
<td>$H_0: \mu = \mu_0$, CI for μ (CLT Z)</td>
<td>Paired $H_0: \mu_D = 0$, CI for μ_D (Signed rank)</td>
</tr>
<tr>
<td></td>
<td>$H_0: \mu = \mu_0$, CI for μ (CLT Z)</td>
<td>2 ind samples $H_0: \mu_1 = \mu_2$ (Mann-Whitney)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 ind samples $H_0: \sigma^2 = \sigma^2_0$ (Levene's)</td>
</tr>
<tr>
<td>Binomial</td>
<td>$H_0: p = p_0$ (Binomial Z = $B(n, p)$)</td>
<td>2 ind samples $H_0: p_1 = p_2$, CI for $p_1 - p_2$ (CLT Z)</td>
</tr>
</tbody>
</table>

- For testing or CI, address model assumptions (e.g. normality, independence, equal variance) via detection, correction, and robustness.
- In hypothesis testing, H_0, H_A (1-sided or 2-sided), test statistic and its distribution, p-value, interpretation, rejection region, α, β, power, sample size determination.
- For paired t-test, the assumptions are $D \sim iid N(\mu_D, \sigma^2_D)$ where $D = Y_1 - Y_2$. Y_1 and Y_2 need not be normal. Y_1 and Y_2 need not be independent.

More on assumptions

- **Assumptions**: Normality, Stem-and-leaf plot; normal scores plot, Independence, Study design, Equal variance, Levene's test, Correct model, More later

Detect unequal variance

- Plot trt standard deviation vs trt mean.
- Or use an extension of Levene's test for

$$H_0: \sigma^2_1 = \sigma^2_2 = \cdots = \sigma^2_k.$$

The main idea remains the same, except that a one-way ANOVA is used instead of a two-sample t-test.

One-way ANOVA

Levene's test

For example, consider $k = 3$ groups of data.

Sample 1: 2, 5, 7, 10
Sample 2: 4, 8, 19
Sample 3: 1, 2, 4, 4, 7

1. Find the median for each sample. Here $\bar{y}_1 = 6, \bar{y}_2 = 8, \bar{y}_3 = 4$.
2. Subtract the median from each obs and take absolute values.
 - Sample 1*: 4, 1, 1, 4
 - Sample 2*: 4, 0, 11
 - Sample 3*: 3, 2, 0, 0, 3
3. For any sample that has an odd sample size, remove 1 zero.
 - Sample 1*: 4, 1, 1, 4
 - Sample 2*: 4, 11
 - Sample 3*: 3, 2, 0, 3
4. Perform a one-way ANOVA t-test on the final results.

 Source df SS MS F p-value
 | Group | 2 44.6 22.30 3.95 0.05 | $p < 0.10$ |
 | Error | 7 39.5 5.64 | |
 | Total | 9 84.1 | |

One-way ANOVA

Key R commands

```r
# Fish length example
y1 = c(18.2, 20.1, 17.6, 16.8, 18.8, 19.7, 19.1)
y2 = c(17.4, 18.7, 19.1, 16.4, 15.9, 18.4, 17.7)
y3 = c(16.2, 18.6, 17.7, 16.5, 15.8, 17.1, 16.7)
y = c(y1, y2, y3)
# Calculate mean and SD of each group
m = mean(y)
s = sd(y)
# Levene's test
levene.test(y ~ factor(trt), data = data.frame(y, trt))
```

One-way ANOVA

Detection

<table>
<thead>
<tr>
<th>Normality</th>
<th>Stem-and-leaf plot; normal scores plot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Independence</td>
<td>Study design</td>
</tr>
<tr>
<td>Equal variance</td>
<td>Levene's test</td>
</tr>
<tr>
<td>Correct model</td>
<td>More later</td>
</tr>
</tbody>
</table>

One-way ANOVA

```r
# Analysis of variance
anova(lm(y ~ factor(trt), data = data.frame(y, trt)))
```
Comparisons among Means

Fish length example continued

Recall the example with $k = 3$ trts and $n = 7$ obs/trt. Test $H_0 : \mu_1 = \mu_3$ vs $H_A : \mu_1 \neq \mu_3$.

- $\bar{y}_1 = 18.61, \bar{y}_3 = 16.84, n_1 = n_3 = 7$, $s_p = 1.387$ on df = 18.

- The observed test statistic is

$$t = \frac{\bar{y}_1 - \bar{y}_3}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_3}}} = \frac{18.61 - 16.84}{\sqrt{1.387 \times \frac{2}{7}}} = 2.81$$

on df = 18. The p-value $2 \times P(T_{18} \geq 2.81)$ is between 0.01 and 0.02.

- We may also construct a $(1 - \alpha)$ CI for $\mu_1 - \mu_4$:

$$(\bar{y}_1 - \bar{y}_4) \pm t_{df,\alpha/2} \times s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_3}}$$

- Suppose $\alpha = 0.05$. Thus $t_{18,0.025} = 2.101$ and a 95% CI for $\mu_1 - \mu_3$ is

$$(18.61 - 16.84) \pm 2.101 \times \sqrt{1.387 \times \frac{2}{7}}$$

which is $[0.45, 3.09]$ or 1.77 ± 1.32.

Comparisons among Means

Fish length example continued

Now test $H_0 : \mu_1 - \frac{1}{2}(\mu_2 + \mu_3) = 0$ vs $H_A : \mu_1 - \frac{1}{2}(\mu_2 + \mu_3) \neq 0$.

- Estimate $\mu_1 - \frac{1}{2}(\mu_2 + \mu_3)$ by $Y_1 - \frac{1}{2}(Y_2 + Y_3)$.

- The test statistic is

$$T = \frac{Y_1 - \frac{1}{2}(Y_2 + Y_3) - \mu_{Y_1 - \frac{1}{2}(Y_2 + Y_3)}}{S_{Y_1 - \frac{1}{2}(Y_2 + Y_3)}}$$

- We will see that

$$\mu_{Y_1 - \frac{1}{2}(Y_2 + Y_3)} = \mu_1 - \frac{1}{2}(\mu_2 + \mu_3)$$

and

$$S_{Y_1 - \frac{1}{2}(Y_2 + Y_3)} = s_p \sqrt{\frac{1}{n_1} + \frac{1}{4n_2} + \frac{1}{4n_3}}$$

- Thus a $(1 - \alpha)$ CI for $\mu_1 - \frac{1}{2}(\mu_2 + \mu_3)$ is

$$\bar{y}_1 - \frac{1}{2}(\bar{y}_2 + \bar{y}_3) \pm s_p \sqrt{\frac{1}{n_1} + \frac{1}{4n_2} + \frac{1}{4n_3}}$$

- But first we will generalize this situation.
Comparisons among Means

Contrast

- A contrast is a quantity of the form
 \[\sum_{i=1}^{k} \lambda_i \mu_i \]
 where \(k \) is the # of trts, \(\mu_i \) is the \(i^{th} \) trt mean, and \(\lambda_i \) is the \(i^{th} \) contrast coefficient.

 - For comparison, we require that \(\sum_{i=1}^{k} \lambda_i = 0 \).
 - For example, we have seen two contrasts already.
 - \(\mu_1 - \mu_3 \) is a contrast with \(\lambda_1 = 1, \lambda_2 = 0, \lambda_3 = -1 \):
 \[\sum_{i=1}^{k} \lambda_i \mu_i = 1 \times \mu_1 + 0 \times \mu_2 + (-1) \times \mu_3. \]
 - \(\mu_1 - \frac{1}{2}(\mu_2 + \mu_3) \) is a contrast with \(\lambda_1 = 1, \lambda_2 = -1/2, \lambda_3 = -1/2 \):
 \[\sum_{i=1}^{k} \lambda_i \mu_i = 1 \times \mu_1 + (-1/2) \times \mu_2 + (-1/2) \times \mu_3. \]

 \[\text{Estimate } \hat{\mu}_{XY} \text{ by } X = \sum_{i=1}^{k} \lambda_i \bar{Y}_i. \]

 - Consider the distribution of
 \[T = \frac{X - \mu_X}{S_X} \]

 - Here \(\mu_X = \sum_{i=1}^{k} \lambda_i \mu_i \), because
 \[\mu_X = E(\sum_{i=1}^{k} \lambda_i \bar{Y}_i) = \sum_{i=1}^{k} \lambda_i E(\bar{Y}_i) = \sum_{i=1}^{k} \lambda_i \mu_i. \]

 - For \(S_X \), consider variance first.
 \[\text{Var}(\sum_{i=1}^{k} \lambda_i \bar{Y}_i) = \sum_{i=1}^{k} \lambda_i^2 \text{Var}(\bar{Y}_i) = \sum_{i=1}^{k} \lambda_i^2 \sigma^2/n_i = \sigma^2 \sum_{i=1}^{k} \lambda_i^2/n_i. \]

 - Estimate \(\text{Var}(\sum_{i=1}^{k} \lambda_i \bar{Y}_i) \) by \(S_p^2 \sum_{i=1}^{k} \lambda_i^2/n_i \) and
 \[S_X = S_p \sqrt{\sum_{i=1}^{k} \lambda_i^2/n_i} \]

Fish length example continued

- For the first contrast, \(\lambda_1 = 1, \lambda_2 = 0, \lambda_3 = -1 \),
\[S_X = S_p \sqrt{\frac{1}{7} + \frac{0}{7} + \frac{1}{7}} = S_p \sqrt{\frac{2}{7}} \]
as before.

- For the second contrast, \(\lambda_1 = 1, \lambda_2 = -1/2, \lambda_3 = -1/2 \),
\[S_X = S_p \sqrt{\frac{1}{7} + \frac{1/4}{7} + \frac{1/4}{7}} = S_p \sqrt{\frac{3}{14}} \]

 - Thus for testing \(H_0 : \mu_1 - \frac{1}{2}(\mu_2 + \mu_3) = 0 \), the observed test statistic is
 \[t = \frac{\bar{y}_1 - \frac{1}{2} (\bar{y}_2 + \bar{y}_3)}{S_p \sqrt{\frac{3}{14}}} = \frac{18.61 - (17.66 + 16.84)/2}{\sqrt{1.387 \times \frac{3}{14}}} = 2.49 \]
on df = 18. The p-value \(2 \times P(T_{18} \geq 2.49) \) is between 0.02 and 0.05.

Fish length example continued

- We may also construct a 95% CI for \(\mu_1 - \frac{1}{2}(\mu_2 + \mu_3) \):
 \[\bar{y}_1 - \frac{1}{2} (\bar{y}_2 + \bar{y}_3) \pm t_{18,0.025} S_p \sqrt{\frac{3}{14}} \]

 - A 95% CI for \(\mu_1 - \frac{1}{2}(\mu_2 + \mu_3) \) is
 \[18.61 - \frac{1}{2} (17.66 + 16.84) \pm 2.101 \times \sqrt{1.387 \times \frac{3}{14}} \]
 which is \([0.21, 2.51]\) or \(1.36 \pm 1.15\)
Comparisons among Means

Remarks

- If all \(n_i = n \), then
 \[
 \text{Var}(\sum_{i=1}^{k} \lambda_i \bar{Y}_i) = \frac{\sigma^2}{n} \sum_{i=1}^{k} \lambda_i^2.
 \]
 This is called a \textit{balanced case}.

- Single sample \(S_Y = S \sqrt{\frac{1}{n}} \)

- Two samples \(S_{ar{Y}_1 - \bar{Y}_2} = S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} \)

- Multiple samples
 \[
 S_{\sum_{i=1}^{k} \lambda_i \bar{Y}_i} = S_p \sqrt{\sum_{i=1}^{k} \frac{\lambda_i^2}{n_i}}
 \]