Confidence Intervals

An overview

- Most probability distributions are indexed by one or more parameters.
- For example, $N(\mu, \sigma^2)$ or $B(n, p)$.
- In significance tests, we have used point estimators for parameters.
- For example, for iid $Y_1, Y_2, \ldots, Y_n \sim N(\mu, \sigma^2)$, \bar{Y} is a point estimator of μ and S^2 is a point estimator of σ^2.
- Note that $E(\bar{Y}) = \mu$ and $E(S^2) = \sigma^2$. That is, \bar{Y} is an unbiased estimator of μ and S^2 is an unbiased estimator of σ^2.
- Another example, for $Y \sim B(n, p)$, $\hat{p} = Y/n$ is an unbiased (point) estimator of p, because $E(\hat{p}) = p$.
- Now we study interval estimator to give a reasonable interval for parameters (e.g. (c_1, c_2) for μ).
- The assumptions are the same as in significance testing, but we do not need a null hypothesis on the parameters (e.g. $\mu = \mu_0$).

Confidence Intervals

Normal distribution with known σ^2

- Suppose Y_1, Y_2, \ldots, Y_n are iid from $N(\mu, \sigma^2)$ and σ^2 is known.
- We know that \bar{Y} estimates μ, but \bar{Y} can be off somewhat.
- Our goal is to get a plausible range of values for μ based on the sample data.
- Recall that $\bar{Y} \sim N(\mu, \sigma^2/n)$ Hence

 $$0.95 = P(-1.96 \leq Z \leq 1.96) = P(-1.96 \leq \frac{\bar{Y} - \mu}{\sigma/\sqrt{n}} \leq 1.96) = P(-1.96\frac{\sigma}{\sqrt{n}} \leq \bar{Y} - \mu \leq 1.96\frac{\sigma}{\sqrt{n}}) = P(\bar{Y} - 1.96\frac{\sigma}{\sqrt{n}} \leq \mu \leq \bar{Y} + 1.96\frac{\sigma}{\sqrt{n}})$$

- Note that \bar{Y} is random and μ is fixed.
- The interval

 $$\bar{y} - 1.96\frac{\sigma}{\sqrt{n}} \leq \mu \leq \bar{y} + 1.96\frac{\sigma}{\sqrt{n}}$$

 is called a 95% confidence interval for μ (or 0.95 CI for μ).

Confidence Intervals

Remarks

- It is not true that $P(8.23 \leq \mu \leq 13.77) = 0.95$ because once a sample is observed, there is nothing random.
- The 95% probability has to do with the procedure. It is interpreted as, 95% of the time, the CI’s calculated in this way contain μ.
- For a single case, it is interpreted as having 95% confidence that μ is between 8.23 and 13.77.
- The interval $[8.23, 13.77]$ can be thought of as a plausible range of μ.

Confidence Intervals

Normal CI example

Suppose there are eight (8) observations in a sample from $N(\mu, 16)$ and the observed sample mean is $\bar{y} = 11.00$. Then $n = 8$, $\sigma^2 = 16$, and a 95% CI for μ is

$$11.00 - 1.96\frac{4}{\sqrt{8}} \leq \mu \leq 11.00 + 1.96\frac{4}{\sqrt{8}}$$

which is

$$8.23 \leq \mu \leq 13.77$$

or

$$11.00 \pm 2.77$$
Confidence Intervals

Remarks

• In general, let \(z_{\alpha/2} \) denote the \(z \)-score such that
 \[P(-z_{\alpha/2} \leq Z \leq z_{\alpha/2}) = 1 - \alpha. \]

Then we have
 \[1 - \alpha = P(Y - z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \leq \mu \leq Y + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}) \]

• A 100(1 - \(\alpha\))% confidence interval for \(\mu \) (or (1 - \(\alpha\)) CI for \(\mu \)) is
 \[\bar{y} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \leq \mu \leq \bar{y} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \]
 or
 \[\bar{y} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \]

Normal CI example continued

Continued with the CI example that has \(\bar{y} = 11.00, n = 8, \sigma^2 = 16. \) Find a 90% CI for \(\mu \).

• Since 1 - \(\alpha\) = 0.90, we have \(\alpha = 0.10, \alpha/2 = 0.05, z_{\alpha/2} = 1.645 \) (using Table A or the table on page 92).

• Then a 90% CI for \(\mu \) is
 \[11.00 - 1.645 \frac{4}{\sqrt{8}} \leq \mu \leq 11.00 + 1.645 \frac{4}{\sqrt{8}} \]
 which is
 \[8.67 \leq \mu \leq 13.33 \]
 or
 \[11.00 \pm 2.33 \]

• By convention, CI’s are two-sided. But one-sided confidence bounds are possible.

Confidence Intervals

Normal distribution with unknown \(\sigma^2\)

• Suppose \(Y_1, Y_2, \ldots, Y_n \) are iid from \(N(\mu, \sigma^2) \) and \(\sigma^2\) is unknown.

• Recall that
 \[\frac{\bar{Y} - \mu}{S/\sqrt{n}} \sim T_{n-1} \]

• Let \(t_{\alpha/2} \) denote the \(t\)-score such that
 \[P(-t_{n-1, \alpha/2} \leq T_{n-1} \leq t_{n-1, \alpha/2}) = 1 - \alpha. \]

Then we have
 \[1 - \alpha = P(Y - t_{n-1, \alpha/2} \frac{S}{\sqrt{n}} \leq \mu \leq Y + t_{n-1, \alpha/2} \frac{S}{\sqrt{n}}) \]

• A (1 - \(\alpha\)) CI for \(\mu \) is
 \[\bar{y} - t_{n-1, \alpha/2} \frac{S}{\sqrt{n}} \leq \mu \leq \bar{y} + t_{n-1, \alpha/2} \frac{S}{\sqrt{n}} \]
 or
 \[\bar{y} \pm t_{n-1, \alpha/2} \frac{S}{\sqrt{n}} \]

Tomato weight example

• Recall a random sample of \(n = 16 \) tomatoes that has a sample mean weight of \(\bar{y} = 32.50 \) gm.

• Previous we assumed that the weight of tomatoes have a normal distribution \(N(\mu, (5)^2) \).

• Thus a 95% CI for \(\mu \) is
 \[32.50 - 1.96 \times \frac{5}{\sqrt{16}} \leq \mu \leq 32.50 + 1.96 \times \frac{5}{\sqrt{16}} \]
 which is \([30.05, 34.95]\) or \(32.50 \pm 2.45\).

• But suppose we do not know what \(\sigma\) is. Compute a sample variance which turns out to \(s^2 = 30.02\).

• Then since 1 - \(\alpha\) = 0.95, we have \(\alpha = 0.05, \alpha/2 = 0.025, t_{n-1, \alpha/2} = t_{15, 0.025} = 2.131 \) (using Table C), and \(s/\sqrt{n} = \sqrt{30.02/16} = 1.370\)

• Then a 95% CI for \(\mu \) is
 \[32.50 - 2.131 \times 1.370 \leq \mu \leq 32.50 + 2.131 \times 1.370 \]
 which is \([29.58, 35.42]\) or \(32.50 \pm 2.92\).
Confidence Intervals

Inference for unspecified distribution

- Suppose we have a large number of observations from an unspecified distribution with mean \(\mu \) and variance \(\sigma^2 \). Also suppose that \(\sigma^2 \) is unknown. Our goal is to construct a CI for \(\mu \).
- By the CLT and \(S^2 \approx \sigma^2 \) when \(n \) is large, we have the fact that
 \[\frac{\bar{y} - \mu}{S/\sqrt{n}} \approx N(0, 1) \]
- Thus an approximate \((1 - \alpha)\) CI for \(\mu \) is
 \[\bar{y} - \frac{s}{\sqrt{n}} \leq \mu \leq \bar{y} + \frac{s}{\sqrt{n}} \]
- For example, suppose a random sample of size \(n = 85 \), the observed sample mean and sample variance are \(\bar{y} = 25.50, s^2 = 8.3 \).
- For a 95% CI, \(z_{\alpha/2} = 1.96 \) and
 \[25.50 - 1.96 \times \sqrt{\frac{8.3}{85}} \leq \mu \leq 25.50 + 1.96 \times \sqrt{\frac{8.3}{85}} \]
 which is [25.14, 25.86] or 25.50 ± 0.36.

Confidence Intervals

Remarks

- For example, suppose a random sample of size \(n = 8 \) from \(N(\mu, \sigma^2) \) with unknown \(\sigma^2 \). Suppose the observed sample and sample variance are \(\bar{y} = 37.1, S^2 = 6.29 \).
- For testing \(H_0 : \mu = 35 \) versus \(H_A : \mu \neq 35 \), we use t-test. The observed t-score is
 \[t = \frac{\bar{y} - \mu_0}{s/\sqrt{n}} = \frac{37.1 - 35}{\sqrt{6.29}/8} = 2.368 \]
 and \(t_{2.025} = 2.365 \) (using Table C). Thus barely reject \(H_0 \) at the 5% level.
- A 95% CI for \(\mu \) is
 \[37.1 - 2.365\sqrt{6.29}/8 \leq \mu \leq 37.1 + 2.365\sqrt{6.29}/8 \]
 which is [35.003, 39.197], which does not contain 35 (but barely).

Confidence Intervals

Inference for binomial distribution

- Now consider \(Y \sim B(n, p) \) and construct a \((1 - \alpha)\) CI for \(p \) using normal approximation.
- Recall that \(\hat{p} = Y/n \) is a point estimator of \(p \) with
 \[E(\hat{p}) = p, \ Var(\hat{p}) = \frac{pq}{n} \]
- Also recall that when \(np \geq 5, nq \geq 5 \), we can approximate the distribution of \(\hat{p} \) by
 \[\hat{p}_{NA} \sim N(p, \frac{pq}{n}) \]
- For testing \(H_0 : p = p_0 \), use
 \[\frac{\hat{p} - p_0}{\sqrt{p_0(1-p_0)/n}} \approx N(0, 1) \]
 Now since \(\hat{p} \approx p \),
 \[\frac{\hat{p} - p}{\sqrt{p(1-p)/n}} \approx N(0, 1) \]
- Thus an approximate \((1 - \alpha)\) CI for \(p \) is
 \[\hat{p} - z_{\alpha/2}\sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \leq p \leq \hat{p} + z_{\alpha/2}\sqrt{\frac{p(1-p)}{n}} \]
Confidence Intervals

Binomial CI example

In an experiment, a drug is given to treat 200 rats with a certain disease and 63 of them are cured. Let \(p \) denote the cure rate. Let \(Y \) denote the number of rats cured and assume that \(Y \sim B(n, p) \). Construct a 95% CI for \(p \).

- Here \(n = 200, y = 63 \), and the observed \(\hat{p} = y/n = 63/200 = 0.315 \).
- Since \(n\hat{p} = 63 > 5, n(1-\hat{p}) = 137 > 5 \), we use normal approximation.
- Since \(z_{\alpha/2} = Z_{0.025} = 1.96 \), a 95% CI for \(p \) is

 \[
 0.315 - 1.96 \times \sqrt{0.315 \times 0.685/200} \leq p \leq 0.315 + 1.96 \times \sqrt{0.315 \times 0.685/200}
 \]

 which is \([0.251, 0.379]\) or \(0.315 \pm 0.064\).
- Normal approximation is appropriate if \(n\hat{p} \geq 5 \).

The relation between significance testing and CI's for \(p \) is not exact, because different variance terms are used.

Confidence Intervals

A quick summary

<table>
<thead>
<tr>
<th>(Y_1, \ldots, Y_n)</th>
<th>(n)</th>
<th>(\sigma) known</th>
<th>(\sigma) unknown</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N(\mu, \sigma^2)) small</td>
<td>(\bar{y} \pm \frac{z_{\alpha/2}}{\sqrt{n}} \sigma)</td>
<td>(\bar{y} \pm \frac{t_{n-1, \alpha/2}}{\sqrt{n}} \sigma)</td>
<td></td>
</tr>
<tr>
<td>(N(\mu, \sigma^2)) large</td>
<td>(\bar{y} \pm \frac{z_{\alpha/2}}{\sqrt{n}} \sigma)</td>
<td>(\bar{y} \pm \frac{t_{n-1, \alpha/2}}{\sqrt{n}} \sigma)</td>
<td></td>
</tr>
<tr>
<td>(D(\mu, \sigma^2)) small</td>
<td>no general result</td>
<td>no general result</td>
<td></td>
</tr>
<tr>
<td>(D(\mu, \sigma^2)) large</td>
<td>(\bar{y} \pm \frac{z_{\alpha/2}}{\sqrt{n}} \sigma) by CLT</td>
<td>(\bar{y} \pm \frac{z_{\alpha/2}}{\sqrt{n}} \sigma) by CLT</td>
<td></td>
</tr>
</tbody>
</table>

Confidence Intervals

Key R commands

```
# Normal CI example
ybar = 11
d = 4
alpha = 0.05
z = qnorm(alpha/2, lower.tail=F)
z*d/sqrt(n)
[1] 2.771808

# Tomato weight example
ybar = 32.5
n = 16
alpha = 0.05
sd = 5
z = qnorm(alpha/2, lower.tail=F)
z*sd/sqrt(n)
[1] 2.449955

# Fruit can example
sd = sqrt(30.02)
sd/sqrt(n)
[1] 1.369763
t = qt(alpha/2, n-1, lower.tail=F)
t*sd/sqrt(n)
[1] 2.131450

# CLT CI example
ybar = 25.5
sd = 0.5
alpha = 0.05
z = qnorm(alpha/2, lower.tail=F)
zd/sqrt(n)
[1] 0.3576283
```

Confidence Intervals

Key R commands

```
# Tomato weight example
ybar = 32.5
n = 16
alpha = 0.05
sd = 5
z = qnorm(alpha/2, lower.tail=F)
zd/sqrt(n)
[1] 2.449955

# Fruit can example
sd = sqrt(30.02)
zd/sqrt(n)
[1] 1.369763
t = qt(alpha/2, n-1, lower.tail=F)
tzd
[1] 2.131450

# CLT CI example
ybar = 25.5
sd = 0.5
alpha = 0.05
zd/sqrt(n)
[1] 0.3576283
```
Confidence Intervals

Key R commands

> # Binomial CI example
> y=63
> n=200
> phat = y/n
> alpha = 0.05
> z = qnorm(alpha/2, lower.tail=F)
> sqrt(phat*(1-phat)/n)
[1] 0.06437743
> c(phat-z*sqrt(phat*(1-phat)/n),phat+z*sqrt(phat*(1-phat)/n))
[1] 0.2506226 0.3793774
> # or, directly
> prop.test(y, n, conf.level=0.95)

1-sample proportions test with continuity correction

data: y out of n, null probability 0.5
X-squared = 26.645, df = 1, p-value = 2.445e-07
alternative hypothesis: true p is not equal to 0.5
95 percent confidence interval:
0.2523053 0.3849353
sample estimates:

p
0.315