Significance Tests

An overview

- We may view sample data as outcomes of a data generating process.
- The data generating process may be described by a probability distribution with certain parameters.
- We begin by considering a random sample Y_1, Y_2, \ldots, Y_n of size n from normal distribution $N(\mu, \sigma^2)$ with unknown μ and known σ^2.
- We then use statistics from the sample data to draw inference about the parameters of the probability distribution.
- For example, use the sample mean \bar{Y} to draw inference about the population mean μ.
- There are several ways of statistical inference. One of them is significance testing.
- The main idea of significance tests is to make a yes/no decision about some aspect of a population, based on a single sample.
Significance Tests with Known σ

Fruit can example

A fruit canning company claims that the average weight of a can of peaches is 15 oz, but there is some suspicion that the canner is not filling the cans. Suppose the weight of cans have a normal distribution $N(\mu, (0.3)^2)$. An investigator plans to take a random sample of 60 cans, weigh them, and compute the sample mean \bar{Y}. Her goal is to determine if what is observed about \bar{Y} supports the claim that the average weight of a can of peaches is 15 oz, or what is observed about \bar{Y} supports the suspicion that the average weight of a can of peaches is below 15 oz.

Ingredients of a significance test

1. Aspect of a population that is of interest.
2. Null hypothesis H_0.
3. Alternative hypothesis H_A.
4. Statistic and null distribution.
5. Measure evidence against H_0.
6. Make a decision and interpret in the context of the problem.
Significance Tests with Known σ

Ingredients of a significance test

1. Of interest is the population mean μ.

2. The null hypothesis is

$$H_0 : \mu = 15.$$

Remark: H_0 is the claim initially favored or believed to be true. Thus the results of the sample reflect random variation.

3. The alternative hypothesis is

$$H_A : \mu < 15.$$

Remark: H_A is the departure from H_0 that one wishes to be able to detect. Thus the results of the sample reflect some factor other than random variation.

4. The statistic is the sample mean \bar{Y} based on a random sample of size $n = 60$ (Y_1, Y_2, \ldots, Y_n). Under H_0,

$$\bar{Y} \sim N(15, \frac{(0.3)^2}{60}).$$

That is,

$$\bar{Y} \sim N(15, (0.0387)^2).$$

Remark: The null distribution is based on FACT 1.
Significance Tests with Known σ

Ingredients of a significance test

5. Suppose the observed sample mean is

$$\bar{y} = 14.9$$

based on an observed sample of size $n = 60$ (y_1, y_2, \ldots, y_n). Is this consistent with the claim or the suspicion? We measure the evidence against H_0 by computing a p-value, which is the probability of having data as extreme or more extreme than the observed data, if H_0 were true. For the given sample,

$$p - \text{value} = P(\bar{Y} \leq 14.9|H_0)$$

$$= P\left(\frac{\bar{Y} - 15}{0.3/\sqrt{60}} \leq \frac{14.9 - 15}{0.3/\sqrt{60}}\right)$$

$$= P(Z \leq -2.58)$$

$$= 0.0049$$

6. Either H_0 is true but we have observed an event with probability 0.0049, which is very rare, or H_0 is false.
Significance Tests with Known σ

Remarks

- Alternatively, use:

$$Z = \frac{\bar{Y} - 15}{0.0387}.$$

Under H_0, $\bar{Y} \sim N(15, (0.0387)^2)$ and thus $Z \sim N(0, 1)$.

- The observed z-score is

$$z = \frac{14.9 - 15}{0.0387} = -2.58.$$

- The p-value is

$$P(Z \leq -2.58) = 0.0049.$$

- The statistic $Z = \frac{\bar{Y} - 15}{0.0387}$ here is a test statistic, which refers to a quantity that one can compute from the sample and can be directly interpreted using a statistical table.
Significance Tests with Known σ

Remarks

• Often the p-value is compared against $\alpha = 0.05$. If p-value < 0.05, then we say

"Reject H_0 at the 5% level"

or

"The results are significant at the 5% level"

• The 5% level is known as the α-level. We can have different α-levels. Some common α-levels are 1%, 5%, and 10%.

• The p-value can be interpreted as evidence against H_0. The smaller the p-value, the greater the evidence. Roughly, we can interpret a p-value

 – larger than 0.10 as no evidence against H_0;
 – between 0.05 and 0.10 as weak evidence against H_0;
 – between 0.01 and 0.05 as moderate evidence against H_0;
 – between 0.001 and 0.01 as strong evidence against H_0;
 – smaller than 0.001 as very strong evidence against H_0.

• H_0 is either true or not true. Thus p-value is not $P(H_0$ is true).
Significance Tests with Known σ

Remarks

- In the fruit can example, an observed sample mean \bar{y} close to 15 oz relative to the standard error would result in:
 - a large p-value;
 - do not reject H_0 or accept H_0;
 - finding H_0 plausible;
 - the data supporting the claim.

On the other hand, an observed sample mean \bar{y} far below 15 oz relative to the standard error would result in:

 - a small p-value;
 - reject H_0 or accept H_A;
 - finding weak/moderate/strong/very strong evidence against H_0;
 - the data not supporting the claim.
Significance Tests with Known σ

Remarks

- In general, what we wish to establish is set up as the H_A. For example:

$$H_0 : \mu = 15, \quad H_A : \mu < 15$$

If H_0 is rejected, then the suspicion is plausible. Another example:

$$H_0 : \mu = 14.9, \quad H_A : \mu > 14.9$$

If H_0 is rejected, then the claim is plausible.

- Significance testing also needs to follow rules to be valid mathematically. Here we focus on

$$H_0 : \mu = \mu_0$$

for a given μ_0 and three types of H_A

$$H_A : \mu > \mu_0, \quad H_A : \mu < \mu_0, \quad H_A : \mu \neq \mu_0$$
Significance Tests with Known σ

Tomato weight example

A given variety of tomatoes have a mean weight of 30 gm and weights are approximately normal with $\sigma^2 = 5^2$. A new fertilizer is introduced and its use may affect the mean weight of tomatoes (but not the variance). Sixteen (16) tomatoes which have been grown with the new fertilizer are weighed and a sample mean \bar{Y} is calculated. We wish to determine whether there is evidence of an effect of the new fertilizer on the mean weight of the tomatoes.
Significance Tests with Known σ

Tomato weight example

1. Of interest is $\mu =$ population mean weight of this given variety of tomatoes.
2. $H_0 : \mu = 30$ (i.e., there is no fertilize effect).
3. $H_A : \mu \neq 30$ (i.e., there is a fertilize effect).
4. Under H_0,
 \[\bar{Y} \sim N(30, \frac{5^2}{16}) \]
 (i.e., $\mu_{\bar{Y}} = 30, \sigma_{\bar{Y}} = 1.25$). Or the test statistic is
 \[Z = \frac{\bar{Y} - 30}{1.25} \sim N(0, 1). \]
5. Suppose the observed sample mean is $\bar{y} = 32.5$. Then
 \[z = \frac{32.5 - 30}{1.25} = 2 \]
 and the p-value is
 \[p - \text{value} = P(Z \leq -2) + P(Z \geq 2) = 2 \times P(Z \geq 2) \]
 \[= 2 \times 0.0228 = 0.0456. \]
6. Reject H_0 at the 5% level. There is weak/moderate evidence against H_0.
Significance Tests with Known σ

Remarks

- Here H_A is a two-sided alternative.
- The observed \bar{y} is 2 standard deviation above the population mean under H_0 (i.e. $z = 2$). If the observed \bar{y} were 2 standard deviation below the population mean (i.e. $z = -2$), we would be equally surprised.
- That is, if the observed \bar{y} is 32.5 or larger provides evidence against H_0, then so does an observed \bar{y} of 27.5 or smaller.
- Decide on a one-sided versus a two-sided H_A before looking at the data.
- In general, use a two-sided H_A unless there are strong reasons to use a one-sided H_A.
- In practice, the population variance σ^2 is not known. Thus the term

$$Z = \frac{\bar{Y} - \mu}{\sigma/\sqrt{n}}$$

cannot be calculated. We estimate σ^2 by the sample variance S^2.

110
Significance Tests with Unknown σ

Main idea

- Consider a random sample Y_1, Y_2, \ldots, Y_n of size n from normal distribution $N(\mu, \sigma^2)$ with unknown μ and unknown σ^2.

- Suppose the significance test of interest is:

 $$H_0 : \mu = \mu_0$$

 for a given μ_0.

- The following is the test statistic

 $$T = \frac{\bar{Y} - \mu_0}{S/\sqrt{n}}$$

- A very useful fact is that, under H_0,

 $$T \sim T_{n-1}$$

 where T_{n-1} is a T distribution with $n-1$ degrees of freedom (d.f.).
Significance Tests with Unknown σ

T distribution

- Like a standard normal distribution Z, a T-distribution is also defined by a bell-shaped distribution curve and is symmetric about 0.
- But a T-distribution has heavier tails than the Z distribution curve.
- The shape of the distribution curve depends on the sample size n. For larger n, the distribution curve has thinner tails, less spread, and more Z-like.
- In fact, $T_\infty = Z$.
- The d.f. are the same as the d.f. of the sample variance S^2.
Significance Tests with Unknown σ

Table C

- Table C on page 410 of the bluebook gives

 $$P(T \geq a)$$

 for various d.f. (row index). The selected a values are inside of Table C and the corresponding probabilities are on the top of Table C (column index).

<table>
<thead>
<tr>
<th>df</th>
<th>...</th>
<th>0.10</th>
<th>0.05</th>
<th>0.025</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>...</td>
<td>1.833</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

 means $P(T_9 \geq 1.833) = 0.05$.

- For example, $P(T_9 \geq 1.833) = 0.05$.

- Table C gives both upper tail probabilities such as

 $$P(T_9 \geq 1.833) = 0.05$$

 and quantiles such as the 0.95^{th} quantile $q_{0.95} = 1.833$

 $$P(T_9 \geq q_{0.95}) = 0.05.$$
Significance Tests with Unknown σ

Wheat yield example

Six (6) 1-acre plots are sown with a new variety of wheat. The yields are (in cut/acre):

25, 21, 24, 20, 26, 22

and are from $N(\mu, \sigma^2)$. Is there evidence that the population mean yield for this variety of wheat differs from 20 cut/acre?
Significance Tests with Unknown σ

Wheat yield example

- Let $\mu =$ population mean yield of this variety of wheat.
- $H_0 : \mu = 20$ versus $H_A : \mu \neq 20$ (i.e. $\mu_0 = 20$).
- Under H_0, the test statistic is

$$T = \frac{\bar{Y} - \mu_0}{S/\sqrt{n}} \sim T_{n-1}$$

- Here $n = 6$, $\bar{y} = 23$, $s = 2.37$.
- The observed test statistic is

$$t = \frac{\bar{y} - \mu_0}{s/\sqrt{n}} = \frac{23 - 20}{2.37/\sqrt{6}} = 3.10.$$

on d.f. $= n - 1 = 5$.

- Thus the p-value is

$$p - \text{value} = 2 \times P(T_5 \geq 3.10).$$

Since $0.01 < P(T_5 \geq 3.10) < 0.025$ from Table C, the p-value is between 0.02 and 0.05.

- Reject H_0 at the 5% level, but not at the 1% level. There is moderate evidence against H_0.

115
Significance Tests with Unknown σ

Remarks

• An observed sample mean \bar{y} close to 20 relative to the standard error would result in:

 – a small $|t|$ and a large p-value;
 – do not reject H_0 or accept H_0;
 – finding H_0 plausible;
 – the data supporting H_0.

On the other hand, an observed sample mean \bar{y} far from 20 relative to the standard error would result in:

 – a large t and a small p-value;
 – reject H_0 or accept H_A;
 – finding weak/moderate/strong/very strong evidence against H_0;
 – the data not supporting H_0.

• This is known as a t-test.
Significance Tests with Unknown σ

Milk yield example

A farmer wishes to sell a herd in Wisconsin and claims that the mean milk yield of cows in this population is at least 40 lbs/day. But there is suspicion about this claim. Consider milk yield in lb/day for fourteen (14) cows from this herd on a given day. Assume that data form a random sample of size 14 from normal distribution $N(\mu, \sigma^2)$.
Significance Tests with Unknown σ

Milk yield example

- Let $\mu =$ population mean milk yield of this herd.
- $H_0 : \mu \geq 40$ versus $H_A : \mu < 40$ (i.e. $\mu_0 = 40$).
- Under H_0, the test statistic is
 \[T = \frac{\bar{Y} - \mu_0}{S/\sqrt{n}} \sim T_{n-1} \]
- Suppose the observed $\bar{y} = 36.2, s^2 = 95.26$. Then the observed test statistic is:
 \[t = \frac{\bar{y} - \mu_0}{s/\sqrt{n}} = \frac{36.2 - 40}{\sqrt{95.26/14}} = -1.46 \]
 on d.f. $= n - 1 = 13$.
- Thus the p-value is
 \[p - value = P(T_{13} \leq -1.46), \]
 which is between 0.05 and 0.10.
- Reject H_0 at the 10% level but do not reject H_0 at the 5% level. There is weak evidence against H_0.
Significance Tests with Unknown σ

Remarks

- If $H_0 : \mu = 40$ is rejected, then any μ_0 above 40 will also be rejected.

- Again the issue of one-sided alternative versus two-sided alternative as for significance tests with known σ.

- Assumptions on a t-test:
 1. Y_1, \ldots, Y_n form a random sample of size n from $\mathcal{N}(\mu, \sigma^2)$.
 2. σ^2 is unknown (i.e., no assumption).
 3. any sample size n (i.e., no assumption).

- T-test is robust for non-normality, but is very sensitive to dependence.
Significance Tests with Binomial Data

Coin toss example

Toss a coin 100 times independently. Let \(Y = \# \) of heads and \(Y \sim B(100, p) \). Perform a significance test on whether \(p \) is 0.65 or not.

- The parameter of interest is the probability of heads \(p \).
- \(H_0 : p = 0.65 \) versus \(H_A : p \neq 0.65 \).
- Under \(H_0 \), we have \(Y \sim B(100, 0.65) \) with \(\mu_Y = 65, \sigma_Y^2 = 22.75 = (4.77)^2 \).
- Suppose the observed \(\# \) of heads is \(y = 74 \). Then the p-value is \(P(Y \geq 74) + P(Y \leq 56) \).
- To compute the p-value, we use normal approximation with \(Y_{NA} \sim N(65, (4.77)^2) \). Thus \(Z = \frac{Y_{NA} - 65}{4.77} \sim N(0, 1) \) and the approximate p-value is

\[
P(Y \geq 74) + P(Y \leq 56) = P(Y_{NA} \geq 74) + P(Y_{NA} \leq 56)
= P(Z \geq 1.89) + P(Z \leq -1.89)
= 2 \times 0.0294 = 0.0588.
\]

- Reject \(H_0 \) at the 5\% level, but not at the 10\% level. There is weak evidence against \(H_0 \).
Significance Tests with Binomial Data

Remarks

• We could have used binomial distribution directly to compute an exact p-value, but hand calculation is tedious.
 \[P(Y \geq 74) + P(Y \leq 56) = p(0) + \cdots + p(56) + p(74) + \cdots + p(100) = 0.0741. \]

• We could have used the proportion of heads as the test statistic
 \[\hat{p} = \frac{Y}{n} \]
 with an approximate normal distribution
 \[\hat{p}_{NA} \sim N(p, \frac{pq}{n}). \]

• In the coin toss example, \(\hat{p}_{NA} \sim N(0.65, (0.0476)^2) \) under \(H_0 \). Thus
 \[Z = \frac{\hat{p}_{NA} - 0.65}{0.0476} \sim N(0, 1). \]
 Since the observed \(\hat{p} = 74/100 \), the p-value is
 \[2 \times P(\hat{p} \geq 0.74) \approx 2 \times P(Z \geq \frac{0.74 - 0.65}{0.0476}) = 2 \times P(Z \geq 1.89) = 0.0588. \]
 Same p-value as before!
Significance Tests with Binomial Data

Remarks

• We can use the normal approximation, because \(np = 65, nq = 35 \) are both larger than 5.

• If \(np < 5 \) or \(nq < 5 \), then we cannot use normal approximation.

• For example, for \(Y \sim B(10, p) \), we wish to test:

\[
H_0 : p = 0.2 \text{ versus } H_A : p < 0.2.
\]

Under \(H_0 \), \(Y \sim B(10, 0.2) \). Since \(np = 2 < 5 \), we cannot use normal approximation. Instead use binomial distribution directly.

• Suppose the observed \(y = 0 \). Then the p-value is

\[
P(Y \leq 0) = (0.8)^{10} = 0.107.
\]

Thus there is no/weak evidence against \(H_0 \).

• If \(H_A : p \neq 0.2 \), then we define p-value as

\[
2 \times P(Y \leq 0) = 2 \times 0.107 = 0.214.
\]

• Note that there is no \(\bar{Y} \) involved. The r.v. of interest is \(Y \sim B(n, p) \).
Significance Tests Using CLT

Main idea

- Consider a random sample Y_1, Y_2, \ldots, Y_n of size n from an arbitrary distribution $D(\mu, \sigma^2)$ with unknown μ and unknown σ^2.
- Recall the CLT,
 \[\bar{Y} \approx N(\mu, \frac{\sigma^2}{n}). \]
- Since for large n, $S^2 \approx \sigma^2$, a useful fact is that
 \[\frac{\bar{Y} - \mu}{S/\sqrt{n}} \approx N(0, 1). \]
- Suppose the significance test of interest is:
 \[H_0 : \mu = \mu_0 \]
 for a given μ_0.
- The following test statistic
 \[\frac{\bar{Y} - \mu_0}{S/\sqrt{n}} \]
 is approximately $N(0, 1)$.

123
Significance Tests Using CLT

Remarks

• If the distribution is normal, then regardless of the sample size n,

$$\frac{\bar{Y} - \mu_0}{S/\sqrt{n}} \sim T_{n-1}$$

and the distribution is exact, not approximate.

• If n is large, then T_{n-1} is more and more like $N(0, 1)$. Thus the new fact here is consistent with the previous results.
Significance Tests Using CLT

Check weight example

A scale is used to weigh a check weight. Over the years, the weight is 40.6 gm. After a lab fire, the scale is re-tested to see if it is affected by the fire. One hundred (100) measures are taken and the observed $\bar{y} = 41.6$, $s = 5$.

- Let $\mu =$ mean weight of the check weight after the fire.
- $H_0 : \mu = 40.6$ versus $H_A : \mu \neq 40.6$ (i.e. $\mu_0 = 40.6$).
- By the CLT, under H_0,
 \[Z = \frac{\bar{Y} - \mu_0}{S/\sqrt{n}} \approx N(0,1). \]

- Thus the observed test statistic is
 \[z = \frac{41.6 - 40.6}{5/\sqrt{100}} = 2.0. \]
 and the p-value is
 \[2 \times P(Z \geq 2.0) = 2 \times 0.0228 = 0.0456. \]

- Reject H_0 at the 5% level, but not the 1% level. There is weak/moderate evidence against H_0.
Significance Tests

A quick summary

<table>
<thead>
<tr>
<th>Y_1, \ldots, Y_n</th>
<th>σ^2</th>
<th>test on</th>
<th>test stats</th>
<th>test is</th>
</tr>
</thead>
<tbody>
<tr>
<td>$N(\mu, \sigma^2)$</td>
<td>known</td>
<td>μ</td>
<td>$Z = \frac{Y - \mu}{\sigma/\sqrt{n}}$ $\sim N(0,1)$</td>
<td>exact</td>
</tr>
<tr>
<td>$D(\mu, \sigma^2)$</td>
<td>known</td>
<td>μ</td>
<td>$Z = \frac{Y - \mu}{\sigma/\sqrt{n}}$ $\sim N(0,1)$</td>
<td>approximate</td>
</tr>
<tr>
<td></td>
<td>n is large</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$N(\mu, \sigma^2)$</td>
<td>unknown</td>
<td>μ</td>
<td>$Z = \frac{Y - \mu}{S/\sqrt{n}}$ $\sim T_{n-1}$</td>
<td>exact</td>
</tr>
<tr>
<td>$D(\mu, \sigma^2)$</td>
<td>unknown</td>
<td>μ</td>
<td>$Z = \frac{Y - \mu}{S/\sqrt{n}}$ $\sim N(0,1)$</td>
<td>approximate</td>
</tr>
<tr>
<td></td>
<td>n is large</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$B(n, p)$</td>
<td>$np \geq 5$</td>
<td>p</td>
<td>$Z = \frac{Y_{NA} - \mu_Y}{\sigma_Y}$ $\sim N(0,1)$</td>
<td>approximate</td>
</tr>
<tr>
<td></td>
<td>$nq \geq 5$</td>
<td></td>
<td>$\mu_Y = np$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$\sigma_Y^2 = npq$</td>
<td></td>
</tr>
</tbody>
</table>
Significance Tests

Another quick summary

<table>
<thead>
<tr>
<th>Y_1, \ldots, Y_n</th>
<th>n</th>
<th>σ known</th>
<th>σ unknown</th>
</tr>
</thead>
<tbody>
<tr>
<td>$N(\mu, \sigma^2)$</td>
<td>small</td>
<td>Z</td>
<td>T</td>
</tr>
<tr>
<td>$N(\mu, \sigma^2)$</td>
<td>large</td>
<td>Z</td>
<td>T</td>
</tr>
<tr>
<td>$D(\mu, \sigma^2)$</td>
<td>small</td>
<td>no general result</td>
<td>no general result</td>
</tr>
<tr>
<td>$D(\mu, \sigma^2)$</td>
<td>large</td>
<td>Z by CLT</td>
<td>Z by CLT</td>
</tr>
</tbody>
</table>
Significance Tests

Another look at the α-level

- Recall that α is the level of significance testing. For example, $\alpha = 0.01, 0.05, 0.10$.
- In significance testing, we can make two types of mistakes:
 - Type I error: reject H_0 when H_0 is true.
 - Type II error: accept H_0 when H_A is true.
- Then the probability of type I error is α.
- In the milk yield example, under $H_0 : \mu = 40$, from Table C,
 \[\alpha = 0.05 = P(T_{13} \leq -1.771|H_0) \]
- The observed $t = -1.46$ and the p-value is between 0.05 and 0.10.
- Do not reject H_0 at the 5% level, because the observed t is above -1.771.
- This is another way of thinking about significance testing.
- We will return to this later on.
Significance Tests

Key R commands

> # fruit can example p-value
> pnorm(14.9, mean=15, sd=0.3/sqrt(60), lower.tail=T)
[1] 0.004911637

> # tomato weight example p-value
> 2*pnorm(32.5, mean=30, sd=5/sqrt(16), lower.tail=F)
[1] 0.04550026

> # wheat yield example
> wheat = c(25, 21, 24, 20, 26, 22)
> t.test(wheat, mu=20, alternative="two.sided")

One Sample t-test

data: wheat
t = 3.1053, df = 5, p-value = 0.02669
alternative hypothesis: true mean is not equal to 20
95 percent confidence interval:
 20.51658 25.48342
sample estimates:
mean of x
 23

> # alternatively
> wheat.ybar = mean(wheat)
> wheat.s = sd(wheat)
> wheat.n = length(wheat)
> wheat.mu = 20
> wheat.t = (wheat.ybar-wheat.mu)/(wheat.s/sqrt(wheat.n))
> wheat.t
[1] 3.105295
> 2*pt(wheat.t, wheat.n-1, lower.tail=F)
[1] 0.02669259
Significance Tests

Key R commands

> # milk yield example
> milk.ybar = 36.2
> milk.s = sqrt(95.26)
> milk.n = 14
> milk.mu = 40
> milk.t = (milk.ybar-milk.mu)/(milk.s/sqrt(milk.n))
> milk.t
[1] -1.456774
> pt(milk.t, milk.n-1, lower.tail=T)
[1] 0.08445275

> # coin toss example
> # exact p-value
> pbinom(56, size=100, prob=0.65, lower.tail=T)+pbinom(73, size=100, prob=0.65, lower.tail=F)
[1] 0.07405748
> # normal approximation
> 2*pnorm(74, mean=100*0.65, sd=sqrt(100*0.65*0.35),lower.tail=F)
[1] 0.05917207
> # success proportion
> 2*pnorm(74/100, mean=0.65, sd=sqrt(0.65*0.35/100),lower.tail=F)
[1] 0.05917207

> # check weight example
> 2*pnorm(41.6, mean=40.6, sd=5/sqrt(100), lower.tail=F)
[1] 0.04550026