The Poisson distribution arises in many biological contexts. Examples of random variables for which a Poisson distribution might be reasonable include:

- the number of bacterial colonies in a Petri dish;
- the number of trees in an area of land;
- the number of offspring an individual has;
- the number of nucleotide base substitutions in a gene over a period of time;

The Poisson distribution is discrete, like the binomial distribution, but has only a single parameter μ that is both the mean and the variance.

In R, you can compute Poisson probabilities with the function `dpois`. For example, if $\mu = 10$, we can find $\Pr\{Y = 12\} = e^{-10} \frac{10^{12}}{12!}$ with the command

```r
dpois(12, 10)
```

This approximation is most useful when n is large so that the binomial coefficients are very large.
Example (cont.)

Find the probability of three or more individuals.

Solution: Instead of summing the probabilities from 3 to infinity, we can use the complement rule.

\[P(Y \geq 3) = 1 - P(Y = 0) - P(Y = 1) - P(Y = 2) \]

In R, this is found by one of two ways.

```r
> 1 - ppois(2, 1.8)
[1] 0.2693789
> 1 - sum(dpois(0:2, 1.8))
[1] 0.2693789
```

The Poisson Process

- The Poisson Process arises naturally under assumptions that are often reasonable.
- For the following, think of points as being exact times or locations.
- The assumptions are:
 - The chance of two simultaneous points is negligible;
 - The expected value of the random number of points in a region is proportional to the size of the region.
 - The random number of points in non-overlapping regions are independent.
- Under these assumptions, the random variable that counts the number of points has a Poisson distribution.
- If the expected rate of points is \(\lambda \) points per unit length (area), then the distribution of the number of points in an interval (region) of size \(t \) is \(\mu = \lambda t \).

Example

Suppose that we assume that at a location, a particular species of plant is distributed according to a Poisson process with expected density 0.2 individuals per square meter. In a nine square meter quadrat, what is the probability of no individuals?

Solution: The number of individuals has a Poisson distribution with mean \(\mu = 9 \times 0.2 = 1.8 \). The probability of this is

\[P(Y = 0 | \mu = 1.8) = \frac{e^{-1.8} (1.8)^0}{0!} = 0.165299 \]

In R, we can compute this as

```r
> dpois(0, 1.8)
[1] 0.1652989
```