Summaries of Categorical Variables

- A frequency distribution is a list of the observed categories and a count of the number of observations in each.
- A frequency distribution may be displayed with a table or a bar chart.
- For ordinal categorical random variables, it is conventional to order the categories in the display (table or bar chart) in the meaningful order.
- For non-ordinal variables, two conventional choices are alphabetical and by size of the counts.
- The vertical axis of a bar chart may show frequency or relative frequency.
- It is conventional to leave space between bars of a bar chart of a categorical variable.

Summary of Blood Type Data

Here is a frequency table.

```r
> summary(BloodType)
A   AB  B  I dont know  O
 27  10   9     34     16
```

Here is a bar chart.

![Bar chart of Blood Type Data]

Summary of Majors

```
[,1]
Animal Science      5
Bacteriology        3
Biochemistry         4
Biological Aspects of Conservation  2
Biology             24
Biomedical Engineering 4
Botany               1
Business-accounting  1
Chemical Engineering  1
Dairy Science        1
Genetics            30
Kinesiology          2
Life Science Communication 1
Medical Microbiology and Immunology 2
Molecular Biology    1
Nutritional Science  1
Pharmacology/Toxicology 1
Psychology          2
Undecided           2
Wildlife Ecology     2
Wildlife Ecology - Natural Resources 1
Zoology             5
```

Summary of Second Majors

```
[,1]
Bacteriology        2
Biochemistry         2
Biological Aspects of Conservation  3
Biology             1
Chemistry           1
Classics in Humanities 1
French              2
Genetics            2
German              1
I might add or switch to Biology Education 1
Kinesiology         1
Latin American Studies 1
Life Science Communication 1
Molecular Biology   1
Music               68
Philosophy          1
Psychology          1
Spanish             4
Women Studies Certificate 1
Zoology             2
```

Exploratory Data Analysis

- Exploratory Data Analysis involves both graphical displays of data and numerical summaries of data.
- A data set is often represented as a matrix.
- There is a row for each unit.
- There is a column for each variable.
- A unit is an object that can be measured, such as a person, or a thing.
- A variable is a characteristic of a unit that can be assigned a number or a category.
- For the survey data, each respondent is a unit.
- Variables include sex, major, year in school, miles from home, height, and blood type.

Variables

- Variables are either quantitative or categorical.
- In a categorical variable, measurements are categories.
- Examples include blood type, sex.
- The variable year in school is an example of an ordinal categorical variable, because the levels are ordered.
- Quantitative variables record a number for each unit.
- Examples include height, which is continuous and number of sisters, which is discrete.
- Often, continuous variables are rounded to a discrete set of values (such as heights to the nearest inch or half inch).
- We can also make a categorical variable from a continuous variable by dividing the range of the variable into classes (So, for example, height could be categorized as short, average, or tall).
- Identifying the types of variables can be important because some methods of statistical analysis are appropriate only for a specific type of variable.

Samples

- A sample is a collection of units on which we have measured one or more variables.
- The number of observations in a sample is n.
- Common notation for the sample size is n.
- The textbook adopts the convention of using uppercase letters for variables and lower case letters for observed values.
Summaries of Quantitative Variables

- Quantitative variables from very small samples can be displayed with a dotplot.
- Histograms are a more general tool for displaying the distribution of quantitative variables.
- A histogram is a bar graph of counts of observations in each class, but no space is drawn between classes.
- If classes are of different widths, the bars should be drawn so that areas are proportional to frequencies.
- Selection of classes is arbitrary. Different choices can lead to different pictures.
- Too few classes is an over-summary of the data.
- Too many classes can cloud important features of the data with noise.

Summary of Miles from Home for Students within 250 miles

Summary of Height

A Dotplot of Hours of Sleep

Summary of Miles from MSC

Stem-and-Leaf Diagrams

- Stem-and-Leaf diagrams are useful for showing the shape of the distribution of small data sets without losing any (or much) information.
- Begin by rounding all data to the same precision.
- The last digit is the leaf.
- Anything before the last digit is the stem.
- In a stem-and-leaf diagram, each observation is represented by a single digit to the right of a line.
- Stems are shown only once.
- Show stems to fill gaps!
- Combining or splitting stems can lead to a better picture of the distribution.

Summary of Miles from Home for Students within 250 miles

Summary of Height

A Dotplot of Hours of Sleep

Summary of Miles from MSC

Stem-and-Leaf Diagram of Brothers and Sisters

The decimal point is at the !
0 | 00
1 | 00
2 | 00
3 | 00
4 | 0
The decimal point is at the !
0 | 00
2 | 00
4 | 0
Quantiles

- Quantiles are a generic name for positions in the distribution of a quantitative variable.
- For example, percentiles divide a distribution into 100 equal sized parts.
- Quartiles, which divide a distribution into four equal sized parts, are a common statistical tool.
- The first quartile, \(Q_1 \), is the location that separates the smallest quarter of the data from the rest. This is also known as the 25th percentile.
- The third quartile, \(Q_3 \), is the location that separates the top quarter of the data and is also known as the 75th percentile.
- The median is the second quartile.
- Different authors and statistical software packages have different definitions of quantiles.
- The definition I prefer is that a value \(x \) is a \(p \)-quantile of a sample if the proportion of observations less than or equal to \(x \) is at least \(p \) and if the proportion of observations greater than or equal to \(x \) is at least \(1 - p \).

5 Number Summary

- The minimum, first quartile, median, third quartile, and maximum are called the five-number summary of a quantitative variable.
- The interquartile range (IQR) is the difference between the third and first quartiles.
 \[\text{IQR} = Q_3 - Q_1 \]
- The range is the difference between the maximum and the minimum.
- Graphical displays of five-number summaries are called boxplots.

Example:

```r
> fivenum(MilesClass)
(1) 0.20 1.00 1.00 1.25 15.00
```

Skewness

- Histograms show several qualitative features of a quantitative variable, such as the number of modes and skewness.
- A distribution is approximately symmetric if the left and right halves are approximately mirror images of each other.
- A distribution is skewed to the right if the right half of the data (the larger values) are more spread out than the left half of the data.
- A distribution is skewed to the left if the left half of the data (the smaller values) are more spread out than the right half of the data.
- It is fairly common for biological data to be skewed to the right. Often times there is a barrier below which there can be no values, but no upper limit.

Measures of Center

- There are two common measures of center for quantitative variables, the mean and the median.
- For sample data \(y_1, y_2, \ldots, y_n \), the sample mean is
 \[\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i \]
- The sample mean is the balancing point of the variable.
- The sample median is the middle value — at least half the values are larger and at least half are smaller.
- If a sample size is odd, only one number will be the median.
- If a sample size is even, any number between the middle two numbers could be the median. By convention, we take the average of the middle two numbers.
- Imagine a histogram made of a uniform solid material. The mean is about the point at which the solid would balance. The median is about at a point that would divide the area of the histogram exactly in half.

Boxplot of Hours of Sleep

```
```

Comparing the mean and the median

- The mean and median of a symmetric distribution are the same.
- The median is more resistant to outliers than the mean. For example, the mean and median of the numbers 1, 2, 3 are 2, but for the data set 1, 2, 30, the median is still 2, but the mean is 11, far away from each observation.
- The median can be a better measure of a ‘typical value’ than the mean especially for strongly skewed variables.
- If a variable is skewed to the right, the mean will typically be larger than the median.
- The opposite is true if the variable is skewed to the left.

Example:

```r
> mean(MilesHome)
(1) 616.7901
> median(MilesHome)
(1) 132.5
```
The Empirical Rule

For many variables (especially those that are nearly symmetric and bell-shaped), the following empirical rule is often a very good approximation.

- About 68% of the observations are within 1 SD of the mean.
- About 95% of the observations are within 2 SDs of the mean.
- Nearly all observations are within 3 SDs of the mean.

Example:

```r
> sleep = Sleep[!is.na(Sleep)]
> m = mean(sleep)
> s = sd(sleep)
> c(m, s)
> sum(abs(sleep - m) < s)/length(sleep)
[1] 0.6875
> sum(abs(sleep - m) < 2*s)/length(sleep)
[1] 0.9375
> sum(abs(sleep - m) < 3*s)/length(sleep)
[1] 1
```

Samples and Populations

- The previous techniques are useful for describing a data set, or a sample of data.
- It is often of interest to generalize findings from a sample to a larger group that statisticians call a population.
- This generalization is called statistical inference.
- Statistical inference is often concerned with using statistics, characteristics that can be calculated from sample data, to estimate parameters, characteristics of populations.
- Examples:
 - \(p \) = population proportion, \(\hat{p} \) = sample proportion
 - \(\mu \) = population mean, \(\bar{y} \) = sample mean
 - \(\sigma \) = population standard deviation, \(s \) = sample standard deviation

Boxplot of Miles from Class

```r
> boxplot(MilesClass)
```

Side-by-side boxplot of height versus sex

```r
> boxplot(Height ~ Sex)
```

Measures of Dispersion

- The standard deviation or SD is the most common statistical measure of dispersion.
- A deviation from the mean is the signed distance of an observation from the mean.
 \[
 \text{deviation} = \text{value of observation} - \bar{y}
 \]
 Observations greater than the mean have positive deviations while those less than the mean have negative deviations.
- The standard deviation is a special type of average deviation
 \[
 s = \sqrt{\frac{\sum_{i=1}^{n} (y_i - \bar{y})^2}{n-1}}
 \]
 This is almost the square root of the mean squared deviation from the mean.

Measures of Dispersion

- Statisticians use \(n - 1 \) instead of \(n \) in the denominator for a technical mathematical reason of historical, if not practical, importance.
- The standard deviation can often be interpreted as the size of a typical deviation from the mean.