Statistical Estimation

- **Statistical inference** is inference about unknown aspects of a population based on treating the observed data as the realization of a random process.
- We focus in this course on inference in the setting of random samples from populations.
- **Statistical estimation** is a form of statistical inference in which we use the data to estimate a feature of the population and to assess the precision of the estimate.
- Chapter 6 introduces these ideas in the setting of estimating a population mean μ.
Typical Problem

The following data set are the weights (mg) of thymus glands from five chick embryos after 14 days of incubation.

The data was collected as part of a study on development of the thymus gland.

```r
> thymus
[1] 29.6 21.5 28.0 34.6 44.9
```

If we model this data as having been sampled at random from a population of chick embryos with similar conditions, what can we say about the population mean weight?

Standard Error of the Mean

- We know that SD of the sampling distribution of the sample mean \bar{y} can be computed by this formula.

$$\sigma_{\bar{y}} = \frac{\sigma}{\sqrt{n}}$$

- But if we only observe sample data y_1, \ldots, y_n, we do not know the value of the population SD σ, so we cannot use the formula directly.

- However, we can compute the sample standard deviation s, which is an estimate of the population standard deviation σ.

- The expression

$$SE_{\bar{y}} = \frac{s}{\sqrt{n}}$$

is called the standard error of the sample mean and is an estimate of the standard deviation of the sampling distribution of the sample mean. (You can understand why statisticians gave this concept a shorter name.)
Example (cont.)

- Here is some R code to compute the mean, standard deviation, and standard error for the example data.

```r
> m = mean(thymus)
> m
[1] 31.72
> s = sd(thymus)
> s
[1] 8.72909
> n = length(thymus)
> n
[1] 5
> se = s/sqrt(n)
> se
[1] 3.903767
```

- The sample standard deviation is an estimate of how far individual values differ from the population mean.
- The standard error is an estimate of how far sample means from samples of size n differ from the population mean.

Confidence intervals

The basic idea of a confidence interval for μ is as follows.

- We know that the sample mean \bar{y} is likely to be close (within a few multiples of σ/\sqrt{n}) to the population mean μ.
- Thus, the unknown population mean μ is likely to be close to the observed sample mean \bar{y}.
- We can express a confidence interval by centering an interval around the observed sample mean \bar{y} — those are the possible values of μ that would be most likely to produce a sample mean \bar{y}.
Derivation of a Confidence Interval

From the sampling distribution of \(\bar{Y} \), we have the following statement

\[
\Pr \left\{ \mu - z \frac{\sigma}{\sqrt{n}} \leq \bar{Y} \leq \mu - z \frac{\sigma}{\sqrt{n}} \right\} = 0.9
\]

if we let \(z = 1.645 \), because the area between \(-1.645\) and \(1.645\) under a standard normal curve is 0.9. Different choices of \(z \) work for different confidence levels.

The first inequality is equivalent to

\[
\mu \leq \bar{Y} + z \frac{\sigma}{\sqrt{n}}
\]

and the second is equivalent to

\[
\bar{Y} - z \frac{\sigma}{\sqrt{n}} \leq \mu
\]

which are put together to give

\[
\Pr \left\{ \bar{Y} - z \frac{\sigma}{\sqrt{n}} \leq \mu \leq \bar{Y} + z \frac{\sigma}{\sqrt{n}} \right\} = 0.9
\]

Derivation of a Confidence Interval

This recipe for a confidence interval is then

\[
\bar{Y} \pm z \frac{\sigma}{\sqrt{n}}
\]

- This depends on knowing \(\sigma \).
- If we don’t know \(\sigma \) as is usually the case, we could use \(s \) as an alternative.
- However, the probability statement is then no longer true.
- We need to use a different multiplier to account for the extra uncertainty.
- This multiplier comes from the \(t \) distribution.
Sampling Distributions

\[Z = \frac{\bar{y} - \mu}{\sigma/\sqrt{n}} \]

\[T = \frac{\bar{y} - \mu}{s/\sqrt{n}} \]

- If the population is normal, the statistic \(Z \) has a standard normal distribution.
- If the population is not normal but \(n \) is sufficiently large, the statistic \(Z \) has approximately a standard normal distribution (by the Central Limit Theorem).
- The distribution of the statistic \(T \) is more variable than that of \(Z \) because there is extra randomness in the denominator.
- The extra randomness becomes small as the sample size \(n \) increases.

Student’s \(t \) Distribution

- If \(Y_1, \ldots, Y_n \) are a random sample from any normal distribution and if \(\bar{Y} \) and \(S \) are the sample mean and standard deviation, respectively, then the statistic

\[T = \frac{\bar{Y} - \mu}{S/\sqrt{n}} \]

is said to have a \(t \) distribution with \(n - 1 \) degrees of freedom.
- All \(t \) distributions are symmetric, bell-shaped, distributions centered at 0, but their shapes are not quite the same as normal curves and they are spread out a more than the standard normal curve.
- The spread is largest for small sample sizes. As the sample size (and degrees of freedom) increases, the \(t \) distributions become closer to the standard normal distribution.
- The Table in the back cover of your textbook provides a few key quantiles for several different \(t \) distributions.
The t Distributions in R

- The functions `pt` and `qt` find areas and quantiles of t distributions in R.
- The area to the right of 2.13 under a t distribution with 4 degrees of freedom is
  ```r
  > 1 - pt(2.27, 4)
  [1] 0.04286382
  ```
- To find the 95th percentile of the t distribution with four degrees of freedom, you could do the following.
  ```r
  > qt(0.95, df = 4)
  [1] 2.131847
  ```
- This R code checks the values of the 0.05 upper tail probability for the first several rows of the table.
  ```r
  > round(qt(0.95, df = 1:10), 3)
  ```
- You can use R to find values not tabulated.
  ```r
  > qt(0.95, 77)
  [1] 1.664885
  ```

Mechanics of a confidence interval

A confidence interval for μ takes on the form

$$\bar{Y} \pm t \times \frac{s}{\sqrt{n}}$$

where t is selected so that the area between $-t$ and t under a t distribution curve with $n - 1$ degrees of freedom is the desired confidence level.

In the example, there are df $= n - 1 = 4$ degrees of freedom. A 90% confidence interval uses the multiplier $t = 2.132$. A 95% confidence interval would use $t = 2.776$ instead.

We are 90% confident that the mean thymus weight in the population is in the interval 31.72 ± 8.32 or $(23.4, 40.04)$.

We are 95% confident that the mean thymus weight in the population is in the interval 31.72 ± 10.84 or $(20.88, 42.56)$.
Mechanics of a confidence interval

Notice that these multipliers 2.132 and 2.776 are each greater than the corresponding z multipliers 1.645 and 1.96.

Had the sample size been 50 instead of 5, the t multipliers 1.677 and 2.01 would still be larger than the corresponding z, but by a much smaller amount.

Interpretation of a confidence interval

In our real data example, we would interpret the 90% confidence interval as follows.

We are 90% confident that the mean thymus weight (mg) of all similar chick embryos that had been incubated under similar conditions would be between 23.4 and 40.04.

Notice that the interpretation of a confidence interval

- states the confidence level;
- states the parameter being estimated;
- is in the context of the problem, including units; and
- describes the population.

It is generally good practice to round the margin of error to two significant figures and then round the estimate to the same precision.
Another Example

The diameter of a wheat plant is an important trait because it is related to stem breakage which affects harvest. The stem diameters (mm) of a sample of eight soft red winter wheat plants taken three weeks after flowering are below.

\[2.32.62.42.22.51.92.0\]

The mean and standard deviation are \(\bar{y} = 2.275 \) and \(s = 0.238 \).

(a) Find a 95% confidence interval for the population mean.

(b) Interpret the confidence interval in the context of the problem.

True or False

- True or False. From the same data, a 99% confidence interval would be larger.

- True or False. In a second sample of size eight, there is a 95% probability that the sample mean will be within 0.20 of 2.28.

- True or False. In a second sample of size eight, there is a 95% probability that the sample mean will be within 0.20 of the population mean \(\mu \).

- True or False. The probability is 95% that the sample mean is between 2.08 and 2.48.

- True or False. In the population, 95% of all individuals have stem diameters between 2.08 and 2.48 mm.

- True or False. We can be 95% confident that 95% of all individuals in the population have stem diameters between 2.08 and 2.48 mm.
How big should n be?

- When planning a study, you may want to know how large a sample size needs to be so that your standard error is at least as small as a given size.
- Solving this problem is a matter of plugging in a guess for the population SD and solving for n.

$$\text{Desired SE} = \frac{\text{Guessed SD}}{\sqrt{n}}$$

After solving for n, we have this.

$$n = \left(\frac{\text{Guessed SD}}{\text{Desired SE}}\right)^2$$

Conditions for Validity

- The most important condition is that the sampling process be like simple random sampling.
- If the sampling process is biased, the confidence interval will greatly overstate the true confidence we should have that the confidence interval contains μ.
- If we have random sampling from a non-normal population, the confidence intervals are approximately valid if n is large enough so that the sampling distribution of \bar{Y} is approximately normal.
- The answer to this question depends on the degree of non-normality.
- Specifically, strongly skewed distributions require large n for the approximations to be good.
- Non-normal population shapes that are nonetheless symmetric converge to normal looking sampling distributions for relatively small n.
Confidence Intervals for Proportions

• The sampling distribution of \(\hat{p} \) is the shape of a binomial distribution, but is on the values 0, 1/n, 2/n, \ldots, 1 instead of the integers 0, 1, 2, \ldots, n.

• The mean and standard deviation are 1/n times the mean and SD of a binomial distribution. Namely, the mean is \(p \) and the standard deviation is \(\sqrt{\frac{p(1-p)}{n}} \).

• The conventional 95% confidence interval for \(p \) plugs in the estimate \(\hat{p} \) for \(p \) in the formula for the standard error.

\[
\hat{p} \pm 1.96 \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}
\]

• This formula has been shown to behave erratically in the sense that the actual probability of containing \(p \) fluctuates with \(n \) and is often less than 95%. The size of the error decreases only slowly and erratically with increases in \(n \).

• An alternative method is to compute \(\tilde{p} \), the sample proportion from a fictitious sample with four more observations, two successes and two failures.

Confidence Intervals for Proportions

• If \(\tilde{p} = y/n \), then \(\tilde{p} = (y + 2)/(n + 4) \). The SE calculated as

\[
\text{SE}_{\tilde{p}} = \sqrt{\frac{\tilde{p}(1-\tilde{p})}{n}}
\]

produce better overall confidence intervals.

A 95% confidence interval for \(p \) is computed with the formula

\[
\tilde{p} \pm 1.96\text{SE}_{\tilde{p}}
\]

Note that this confidence interval is not centered at the sample proportion, but rather is sampled at an adjusted proportion. This method is actually a Bayesian method in disguise as a frequentist method.