In class, I described the ideas of random effects and fixed effects. It is appropriate to model a factor as a random effect if you wish to think of the levels as having been randomly selected from a larger population whereas fixed effects are factors where the levels in the problem are the only ones of interest. We also talked about the difference between factors that are crossed or nested. Two factors are crossed if there is at least one observation for each pair of levels. Two factors are nested if the levels of one factor are completely contained in the levels of another factor. For the chimp example in Chapter 14, the factors sign and chimp are crossed because each chimp is measured at each sign. If we created a factor sex, then chimp would be nested within sex as the levels Bruno and Booee are nested within male and Cindy and Thelma are female.

For this problem, it makes sense to consider treating chimp as a random effect. However, R is quite limited in the types of mixed effects models that can be fit. Fitting nested factors works quite well, but fitting crossed factors when one or more are random is far from straight-forward. So, I’m not going to show you how to do it.

But here is an example of fitting a model with nested factors adding the factor sex. In the formula, we indicate the nesting of chimp within sex by sex/CHIMP. We will have to create the sex factor within R. (Alternatively, we could edit the file in which we read in the data). The strategy will be to create a variable that is female everywhere and then change the proper observations to male.

```r
> case1401 <- read.table("sleuth/case1401.csv", header = T, sep = ",")
> attach(case1401)
> sex = rep("female", nrow(case1401))
> sex[CHIMP == "BOOEE"] <- "male"
> sex[CHIMP == "BRUNO"] <- "male"
> sex <- factor(sex)
> new1401 <- data.frame(case1401, sex)
> detach()
> attach(new1401)
> fit1 <- lm(log(MINUTES) ~ SIGN + CHIMP)
> fit2 <- lm(log(MINUTES) ~ SIGN + sex/CHIMP)
> anova(fit1)
```

Analysis of Variance Table

<table>
<thead>
<tr>
<th></th>
<th>Df</th>
<th>Sum Sq</th>
<th>Mean Sq</th>
<th>F value</th>
<th>Pr(>F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIGN</td>
<td>9</td>
<td>45.690</td>
<td>5.077</td>
<td>7.7649</td>
<td>1.498e-05 ***</td>
</tr>
<tr>
<td>CHIMP</td>
<td>3</td>
<td>5.333</td>
<td>1.778</td>
<td>2.7189</td>
<td>0.06421 .</td>
</tr>
<tr>
<td>Residuals</td>
<td>27</td>
<td>17.653</td>
<td>0.654</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

```r
> anova(fit2)
```

Analysis of Variance Table

<table>
<thead>
<tr>
<th></th>
<th>Df</th>
<th>Sum Sq</th>
<th>Mean Sq</th>
<th>F value</th>
<th>Pr(>F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIGN</td>
<td>9</td>
<td>45.690</td>
<td>5.077</td>
<td>7.7649</td>
<td>1.498e-05 ***</td>
</tr>
<tr>
<td>sex</td>
<td>1</td>
<td>0.167</td>
<td>0.167</td>
<td>0.2558</td>
<td>0.61710</td>
</tr>
<tr>
<td>sex:CHIMP</td>
<td>2</td>
<td>5.166</td>
<td>2.583</td>
<td>3.9505</td>
<td>0.03127 *</td>
</tr>
<tr>
<td>Residuals</td>
<td>27</td>
<td>17.653</td>
<td>0.654</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bret Larget April 18, 2003
Notice that the second model just breaks up the sum of squares from *chimp* into two pieces. There is little evidence of a sex effect to explain the differences between the chimps. The estimated regression coefficients for *sign* are identical, and the estimates for *chimp* are simply parameterized in a different way.

```r
> summary(fit1)
Call:
  lm(formula = log(MINUTES) ~ SIGN + CHIMP)
Residuals:
  Min       1Q   Median       3Q      Max
-1.70580 -0.38195  0.03512  0.41762  1.73890
Coefficients: (4 not defined because of singularities)
 Estimate Std. Error t value Pr(> |t|)
(Intercept)  2.69487  0.46096  5.846  3.18e-06 ***
SIGNfood    0.96866  0.57175  1.694  0.101736
SIGNfruit   1.35652  0.57175  2.373  0.025047 *
SIGNhat     1.85663  0.57175  3.247  0.003108 **
SIGNkey     0.12460  0.57175  0.218  0.829124
SIGNlisten -1.05303  0.57175 -1.842  0.076520 .
SIGNlook    2.05422  0.57175  3.593  0.001286 **
SIGNmore    0.30099  0.57175  0.526  0.602881
SIGNshoe    0.05467  0.57175  0.096  0.924527
SIGNstring  2.55070  0.57175  4.461  0.000129 ***
CHIMPBRUNO  0.68133  0.36161  1.884  0.070351 .
CHIMPCINDY  0.09287  0.36161  0.257  0.799270
CHIMPTHELMA 0.84713  0.36161  2.343  0.026766 *
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.8086 on 27 degrees of freedom
Multiple R-Squared:  0.7430 ,  Adjusted R-squared:  0.6287
F-statistic: 6.503 on 12 and 27 DF,  p-value: 2.776e-05

> summary(fit2)
Call:
  lm(formula = log(MINUTES) ~ SIGN + sex/CHIMP)
Residuals:
  Min       1Q   Median       3Q      Max
-1.70580 -0.38195  0.03512  0.41762  1.73890
Coefficients: (4 not defined because of singularities)
 Estimate Std. Error t value Pr(> |t|)
Bret Larget
April 18, 2003

---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.8086 on 27 degrees of freedom
Multiple R-Squared:  0.7430 ,  Adjusted R-squared:  0.6287
F-statistic: 6.503 on 12 and 27 DF,  p-value: 2.776e-05
### Random Effects Models and Nested Factors

| Term             | Estimate | Std. Error | t value  | Pr(>|t|) |
|------------------|----------|------------|----------|----------|
| (Intercept)      | 3.54200  | 0.46096    | 7.684    | 2.9e-08  *** |
| SIGNfood         | 0.96866  | 0.57175    | 1.694    | 0.101736 |
| SIGNfruit        | 1.35652  | 0.57175    | 2.373    | 0.025047 * |
| SIGNhat          | 1.85663  | 0.57175    | 3.247    | 0.003108 ** |
| SIGNkey          | 0.12460  | 0.57175    | 0.218    | 0.829124 |
| SIGNlisten       | -1.05303 | 0.57175    | -1.842   | 0.076520 . |
| SIGNlook         | 2.05422  | 0.57175    | 3.593    | 0.001286 ** |
| SIGNmore         | 0.30099  | 0.57175    | 0.526    | 0.602881 |
| SIGNshoe         | 0.05467  | 0.57175    | 0.096    | 0.924527 |
| SIGNstring       | 2.55070  | 0.57175    | 4.461    | 0.000129 *** |
| sexmale          | -0.84713 | 0.36161    | -2.343   | 0.026766 * |
| sexmale:CHIMPBRUNO | 0.68133 | 0.36161    | 1.884    | 0.070351 . |
| sexfemale:CHIMPCINDY | -0.75426 | 0.36161 | -2.086   | 0.046571 * |

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.8086 on 27 degrees of freedom
Multiple R-Squared: 0.743,  Adjusted R-squared: 0.6287
F-statistic: 6.503 on 12 and 27 DF,  p-value: 2.776e-05

---

Bret Larget  
April 18, 2003