An i.i.d. sample \(X_1, \ldots, X_n\) is taken from a discrete distribution \(F\) with probability function \(f_\theta(x) = (\theta - 1)x^{\theta - 2}\) for \(x = 1, 2, 3, \ldots\) where \(\theta \in \Omega = (1, \infty)\) is an unknown parameter. For this distribution, \(\mathbb{E}(X) = \theta\) and \(\text{Var}(X) = \theta(\theta - 1)\).

1. (6 points) For sample \(s = (x_1, \ldots, x_n)\), show that \(\bar{x}\) is a minimal sufficient statistic.

Solution: The likelihood can be written as a function of \(\bar{x}\) as follows.

\[
L(\theta \mid s) = \prod_{i=1}^{n} (\theta - 1)^{x_i - 1}\theta^{-x_i} = (\theta - 1)^{n(\bar{x} - 1)}\theta^{-n\bar{x}}
\]

Thus, by the factorization theorem, \(\bar{x}\) is a sufficient statistic. To show that \(\bar{x}\) is a minimal sufficient statistic, we consider the likelihood ratio for two separate samples, \(s_1 = (x_1, \ldots, x_n)\) and \(s_2 = (y_1, \ldots, y_n)\).

\[
\frac{L(\theta \mid s_1)}{L(\theta \mid s_2)} = \left(\frac{\theta - 1}{\theta - 1}\right)^{n(\bar{x} - \bar{y})} = \left(\frac{\theta - 1}{\theta - 1}\right)^{n(\bar{x} - \bar{y})}
\]

If this ratio does not depend on \(\theta\), then the exponent must be zero, so \(n(\bar{x} - \bar{y}) = 0\) which implies that \(\bar{x} = \bar{y}\). Thus, \(\bar{x}\) is a minimal sufficient statistic.

Note that putting the likelihood ratio in the form \(g(\theta)^a\) is necessary. Most everyone expressed the likelihood ratio in the form \(g(\theta)^a h(\theta)^b\) and concluded that \(a = b = 0\), but this is not necessarily true. For example, if \(g(\theta) = \theta^2\), \(h(\theta) = \theta\), \(a = 1\), and \(b = -2\), then \(g(\theta)^a h(\theta)^b = 1\) does not depend on \(\theta\), but \(a \neq 0\) and \(b \neq 0\).

2. (6 points) Find the maximum likelihood estimate \(\hat{\theta}\) of \(\theta\) in terms of \(\bar{x}\).

Solution: We begin the solution using the standard method of taking derivatives of the log-likelihood, setting this expression equal to zero, and solving for \(\theta\), but note that there is a subtlety when the sample mean is one.

The sample are all positive integers, but there is a positive probability that all \(x_i\) are equal to one, and this case deserves special attention.

If \(\bar{x} > 1\), the following holds.

\[
L(\theta \mid s) = (\theta - 1)^{n(\bar{x} - 1)}\theta^{-n\bar{x}}
\]

\[
\log L(\theta \mid s) = \ell(\theta \mid s) = n(\bar{x} - 1) \log(\theta - 1) - n\bar{x} \log \theta
\]

\[
\ell'(\theta \mid s) = \frac{n(\bar{x} - 1)}{\theta - 1} - n\bar{x} \theta = 0
\]

\[
\frac{n(\bar{x} - 1)}{\theta - 1} = \frac{n\bar{x}}{\theta}
\]

\[
n(\bar{x} - 1)\theta = n\bar{x}(\theta - 1)
\]

\[
n\bar{x}\theta - n\theta = n\bar{x}\theta - n\bar{x}
\]

\[
\hat{\theta} = \bar{x}
\]

Thus, \(\hat{\theta} = \bar{x}\) is the only possible maximum. We verify that \(\hat{\theta}\) is a maximum by checking the sign of the second
derivative when \(\theta = \bar{x} \).

\[
\ell''(\theta \mid s) \bigg|_{\theta = \bar{x}} = \frac{-n(\bar{x} - 1)}{(\theta - 1)^2} + \frac{n\bar{x}}{\theta^2} \bigg|_{\theta = \bar{x}}
\]

\[
= \frac{-n}{\bar{x} - 1} + \frac{n}{\bar{x}}
\]

\[
= \frac{-n}{\bar{x}(\bar{x} - 1)} < 0
\]

However, when \(\bar{x} = 1 \), the likelihood takes a different form.

\[
L(\theta \mid s, \bar{x} = 1) = \theta^{-n}
\]

This function is decreasing for all \(\theta > 1 \). The maximum in the interval \([1, \infty)\) occurs at the endpoint 1, which is not in the parameter space \(\Omega = (1, \infty) \). Technically, this is a situation where the maximum likelihood estimate does not exist. If the parameter space is expanded so that \(\Omega = [1, \infty) \), then \(\hat{\theta} = \bar{x} \) is the maximum likelihood estimate, but the justification that this is the maximum is different depending on whether or not \(\bar{x} \) is equal to 1.

3. (4 points) Find expressions for the bias, variance, and mean square error of \(\hat{\theta} \).

Solution: By definition, \(\text{Bias}(\hat{\theta}) = E(\hat{\theta} - \theta) \). Thus,

\[
\text{Bias}(\hat{\theta}) = E(\bar{X} - \theta) = \left(\frac{1}{n} \sum_{i=1}^{n} \text{EX}_i \right) - \theta = \theta - \theta = 0
\]

We are given that \(\text{Var}(X) = \theta(\theta - 1) \).

\[
\text{Var}(\hat{\theta}) = \text{Var}(\bar{X}) = \left(\frac{1}{n^2} \sum_{i=1}^{n} \text{Var}X_i \right) = \frac{\theta(\theta - 1)}{n}
\]

The mean square error is the square of the bias plus the variance, so

\[
\text{MSE}(\hat{\theta}) = \frac{\theta(\theta - 1)}{n}
\]

4. (2 points) Evaluate \(\hat{\theta} \) for the sample \(s = (4, 8, 10, 9, 1) \) and find numerical estimates of the bias, variance, and mean square error.

Solution: The sample mean is 6.4, so \(\hat{\theta} = 6.4 \) for this sample. Evaluating the bias, variance, and MLE by plugging in this value gives \(\text{Bias} = 0 \), \(\text{Var}(\hat{\theta}) = 6.912 \), and \(\text{MSE}(\hat{\theta}) = 6.912 \).

5. (2 points) An alternative parameterization uses \(\psi = 1/\theta \). Find the maximum likelihood estimate of \(\psi \).

Solution: \(\psi = 1/\theta \) is a one-to-one function of \(\theta \). Thus, \(\hat{\psi} = 1/\hat{\theta} = 1/6.912 = 0.1447 \).