An ecologist is interested in testing if the density of a certain plant species at a site in northern Wisconsin has changed in the past 50 years. Data comes from sampled one-meter-square quadrats where in each quadrat the number of individuals of the plant species in each quadrat is recorded. In a sample from fifty years ago, the mean number of plants per quadrat was 1.3 in a sample of 20 quadrats. In a recent sample of 50 quadrats, the mean was 0.98. The biologist is willing to assume a Poisson model for the number of plants in each quadrat and assumes that these counts are independent.

Conduct a likelihood ratio test of the null hypothesis that the means are the same for the two times versus the alternative that the more recent time has a lower mean.

Solution: We begin by writing an expression for the likelihood. Let \(s_1 = (x_1, \ldots, x_{20}) \) be the data from the first sample and let \(s_2 = (y_1, \ldots, y_{50}) \) be the data from the second sample. Let \(\theta_1 \) and \(\theta_2 \) be the two means of the Poisson distributions for the respective samples. Then, the likelihood for the complete data set is

\[
L(\theta_1, \theta_2 | s_1, s_2) = \left(\prod_{i=1}^{20} \frac{e^{-\theta_1} \theta_1^{x_i}}{x_i!} \right) \left(\prod_{i=1}^{50} \frac{e^{-\theta_2} \theta_2^{y_i}}{y_i!} \right) = \frac{e^{-20\theta_1 - 50\theta_2} \theta_1^{\sum x_i} \theta_2^{\sum y_i}}{\left(\prod_{i=1}^{20} x_i! \right) \left(\prod_{i=1}^{50} y_i! \right)}
\]

for the two-dimensional parameter space \(\Omega = \{ (\theta_1, \theta_2) : \theta_1, \theta_2 > 0 \} \). The corresponding log-likelihood is

\[
\ell(\theta_1, \theta_2 | s_1, s_2) = -20\theta_1 - 50\theta_2 + 20\bar{x} \log \theta_1 + 50\bar{y} \log \theta_2 - \sum_{i=1}^{20} \log(x_i!) - \sum_{i=1}^{50} \log(y_i!)
\]

Under the null hypothesis restriction \(\theta_1 = \theta_2 \), this simplifies to

\[
\ell_0(\theta | s_1, s_2) = -70\theta + (20\bar{x} + 50\bar{y}) \log \theta - \sum_{i=1}^{20} \log(x_i!) - \sum_{i=1}^{50} \log(y_i!)
\]

Note that

\[
\frac{\partial \ell(\theta_1, \theta_2 | s_1, s_2)}{\partial \theta_1} = -20 + \frac{20\bar{x}}{\theta_1} = 0
\]

which has solution \(\hat{\theta}_1 = \bar{x} = 1.3 \) and a similar calculation shows that \(\hat{\theta}_2 = \bar{y} = 0.98 \). The corresponding log-likelihood evaluated at the MLE is

\[
\max_{\theta_1, \theta_2} \ell(\theta_1, \theta_2 | s_1, s_2) = -75 + 26 \log(1.3) + 49 \log(0.98) - \sum_{i=1}^{20} \log(x_i!) - \sum_{i=1}^{50} \log(y_i!) = -69.16846 + C
\]

Under the null hypothesis, the maximum likelihood estimate is \(\hat{\theta} = (20\bar{x} + 50\bar{y})/70 = (26 + 49)/70 = 1.07 \) and the likelihood is maximized at

\[
\max_{\theta} \ell_0(\theta | s_1, s_2) = -75 + 75 \log(75/70) - \sum_{i=1}^{20} \log(x_i!) - \sum_{i=1}^{50} \log(y_i!) = -69.82553 + C.
\]

The likelihood ratio test statistic is then \(-2\Lambda = 2(69.82553 - 69.16846) = 1.314\).

Here is a formal statement of the hypothesis test. A test of the null hypothesis \(\theta_1 = \theta_2 \) versus the alternative hypothesis \(\theta_1 > \theta_2 \) by a likelihood ratio test has \(p \)-value 0.126 which is half the area to the right of 1.314 under a chi-square distribution with 1 degree of freedom. There is very little evidence in this data that the density of the plant species has decreased in the past fifty years — the observed difference in sample means is consistent with chance variation.