Why do we estimate a density?

Suppose that X_1, \ldots, X_n are i.i.d. random variables from F and that F is unknown but has a Lebesgue p.d.f. f.

Estimation of F can be done by estimating f.

Note that estimators of F derived in §5.1.1 and §5.1.2 do not have Lebesgue p.d.f.'s.

Having a density estimator \hat{f}, F can be estimated by $\hat{F}(x) = \int_{-\infty}^{x} f(t)\,dt$, which may be better than F_n.

\hat{f} itself may be of interest

Difference quotient

Since $f(t) = F'(t)$ a.e., a simple estimator of $f(t)$ is the difference quotient

$$f_n(t) = \frac{F_n(t + \lambda_n) - F_n(t - \lambda_n)}{2\lambda_n}, \quad t \in \mathbb{R},$$

where F_n is the empirical c.d.f., and $\{\lambda_n\}$ is a sequence of positive...
Why do we estimate a density?

Suppose that X_1, \ldots, X_n are i.i.d. random variables from F and that F is unknown but has a Lebesgue p.d.f. f. Estimation of F can be done by estimating f. Note that estimators of F derived in §5.1.1 and §5.1.2 do not have Lebesgue p.d.f.'s.

Having a density estimator \hat{f}, F can be estimated by $\hat{F}(x) = \int_{-\infty}^{x} f(t) dt$, which may be better than F_n.

\hat{f} itself may be of interest.

Difference quotient

Since $f(t) = F'(t)$ a.e., a simple estimator of $f(t)$ is the difference quotient

$$f_n(t) = \frac{F_n(t + \lambda_n) - F_n(t - \lambda_n)}{2\lambda_n}, \quad t \in \mathbb{R},$$

where F_n is the empirical c.d.f., and $\{\lambda_n\}$ is a sequence of positive
Properties of difference quotient

Since $2n\lambda_nf_n(t)$ has the binomial distribution $Bi(F(t + \lambda_n) - F(t - \lambda_n), n),$

$$E[f_n(t)] \to f(t) \quad \text{if } \lambda_n \to 0 \text{ as } n \to \infty$$

and

$$\text{Var}(f_n(t)) \to 0 \quad \text{if } \lambda_n \to 0 \text{ and } n\lambda_n \to \infty.$$

Thus, we should choose λ_n converging to 0 slower than n^{-1}.

If we assume that $\lambda_n \to 0$, $n\lambda_n \to \infty$, and f is continuously differentiable at t, then it can be shown (exercise) that

$$\text{mse}_{f_n(t)}(F) = \frac{f(t)}{2n\lambda_n} + o\left(\frac{1}{n\lambda_n}\right) + O(\lambda_n^2)$$

and, under the additional condition that $n\lambda_n^3 \to 0$,

$$\sqrt{n\lambda_n}[f_n(t) - f(t)] \to_d N(0, \frac{1}{2}f(t)).$$
Kernel density estimators

A useful class of estimators is the class of *kernel density estimators* of the form

\[\hat{f}(t) = \frac{1}{n\lambda_n} \sum_{i=1}^{n} w\left(\frac{t-x_i}{\lambda_n}\right), \]

where \(w \) is a known Lebesgue p.d.f. on \(\mathbb{R} \) and is called the kernel. If we choose \(w(t) = \frac{1}{2} I_{[-1,1]}(t) \), then \(\hat{f}(t) \) is essentially the same as the so-called histogram.

Properties of kernel density estimator

\(\hat{f} \) is a Lebesgue density on \(\mathbb{R} \), since

\[
\int_{-\infty}^{\infty} \hat{f}(t) \, dt = \frac{1}{n\lambda_n} \sum_{i=1}^{n} \int_{-\infty}^{\infty} w\left(\frac{t-x}{\lambda_n}\right) \, dt = \int_{-\infty}^{\infty} w(y) \, dy = 1.
\]

The bias of \(\hat{f}(t) \) as an estimator of \(f(t) \) is

\[
E[\hat{f}(t)] - f(t) = \frac{1}{\lambda_n} \int w\left(\frac{t-z}{\lambda_n}\right) f(z) \, dz - f(t) = \int w(y) [f(t-\lambda_n y) - f(t)] \, dy.
\]
Kernel density estimators

A useful class of estimators is the class of kernel density estimators of the form

\[\hat{f}(t) = \frac{1}{n\lambda_n} \sum_{i=1}^{n} w \left(\frac{t-X_i}{\lambda_n} \right), \]

where \(w \) is a known Lebesgue p.d.f. on \(\mathbb{R} \) and is called the kernel.

If we choose \(w(t) = \frac{1}{2} I_{[-1,1]}(t) \), then \(\hat{f}(t) \) is essentially the same as the so-called histogram.

Properties of kernel density estimator

\(\hat{f} \) is a Lebesgue density on \(\mathbb{R} \), since

\[\int_{-\infty}^{\infty} \hat{f}(t)\,dt = \frac{1}{n\lambda_n} \sum_{i=1}^{n} \int_{-\infty}^{\infty} w \left(\frac{t-X_i}{\lambda_n} \right) \,dt = \int_{-\infty}^{\infty} w(y)\,dy = 1. \]

The bias of \(\hat{f}(t) \) as an estimator of \(f(t) \) is

\[E[\hat{f}(t)] - f(t) = \frac{1}{\lambda_n} \int w \left(\frac{t-z}{\lambda_n} \right) f(z)\,dz - f(t) = \int w(y)[f(t-\lambda_n y) - f(t)]\,dy. \]
Properties of kernel density estimator

If f is bounded and continuous at t, then, by the dominated convergence theorem, the bias of $\hat{f}(t)$ converges to 0 as $\lambda_n \to 0$.

If f' is bounded and continuous at t and $\int |t| w(t) dt < \infty$, then the bias of $\hat{f}(t)$ is $O(\lambda_n)$.

If f is bounded and continuous at t and $w_0 = \int [w(t)]^2 dt < \infty$, the variance of $\hat{f}(t)$ is

\[
\text{Var}(\hat{f}(t)) = \frac{1}{n\lambda_n^2} \text{Var} \left(w \left(\frac{t - X_1}{\lambda_n} \right) \right)
\]

\[
= \frac{1}{n\lambda_n^2} \int \left[w \left(\frac{t - z}{\lambda_n} \right) \right]^2 f(z) dz
\]

\[
- \frac{1}{n} \left[\frac{1}{\lambda_n} \int w \left(\frac{t - z}{\lambda_n} \right) f(z) dz \right]^2
\]

\[
= \frac{1}{n\lambda_n} \int [w(y)]^2 f(t - \lambda_n y) dy + O \left(\frac{1}{n} \right)
\]

\[
= \frac{w_0 f(t)}{n\lambda_n} + o \left(\frac{1}{n\lambda_n} \right)
\]
Properties of kernel density estimator

Hence, if $\lambda_n \to 0$, $n\lambda_n \to \infty$, and f' is bounded and continuous at t, then

$$\text{mse}_{\hat{f}(t)}(F) = \frac{w_0 f(t)}{n\lambda_n} + O(\lambda_n^2).$$

If $\lambda_n \to 0$, $n\lambda_n \to \infty$, and f is bounded and continuous at t and

$$w_0 = \int_{-\infty}^{\infty} [w(t)]^2 dt < \infty,$

then

$$\sqrt{n\lambda_n} \{\hat{f}(t) - E[\hat{f}(t)]\} \to_d N(0, w_0 f(t)).$$

This can be shown as follows.

Let $Y_{in} = w \left(\frac{t-X_i}{\lambda_n} \right)$.

Then Y_{1n}, \ldots, Y_{nn} are independent and identically distributed with

$$E(Y_{1n}) = \int_{-\infty}^{\infty} w \left(\frac{t-x}{\lambda_n} \right) f(x) dx = \lambda_n \int_{-\infty}^{\infty} w(y) f(t - \lambda_n y) dy = O(\lambda_n)$$

and
Properties of kernel density estimator

\[
\text{Var}(Y_{1n}) = \int_{-\infty}^{\infty} \left[w\left(\frac{t-x}{\lambda_n} \right) \right]^2 f(x)dx - \left[\int_{-\infty}^{\infty} w\left(\frac{t-x}{\lambda_n} \right) f(x)dx \right]^2
\]
\[
= \lambda_n \int_{-\infty}^{\infty} [w(y)]^2 f(t - \lambda_n y)dy + O(\lambda_n^2)
\]
\[
= \lambda_n w_0 f(t) + o(\lambda_n),
\]

since \(f \) is bounded and continuous at \(t \) and \(w_0 = \int_{-\infty}^{\infty} [w(t)]^2 dt < \infty \).

Then
\[
\text{Var}(\hat{f}(t)) = \frac{1}{n^2 \lambda_n^2} \sum_{i=1}^{n} \text{Var}(Y_{in}) = \frac{w_0 f(t)}{n \lambda_n} + o\left(\frac{1}{n \lambda_n} \right).
\]

Note that \(\hat{f}(t) - E\hat{f}(t) = \sum_{i=1}^{n} [Y_{in} - E(Y_{in})]/(n\lambda_n) \).

To apply Lindeberg’s central limit theorem to \(\hat{f}(t) \), we find, for \(\varepsilon > 0 \),
\[
E\left(Y_{1n}^2 I\{|Y_{1n} - E(Y_{1n})| > \varepsilon \sqrt{n\lambda_n} \} \right) = \int_{|w(y) - E(Y_{1n})| > \varepsilon \sqrt{n\lambda_n}} [w(y)]^2 f(t - \lambda_n y)dy,
\]
which converges to 0 under the given conditions.
Properties of kernel density estimator

This proves

\[\sqrt{n \lambda_n} \{ \hat{f}(t) - E[\hat{f}(t)] \} \to_d N(0, w_0 f(t)). \]

Furthermore,

\[
E[\hat{f}(t)] - f(t) = \frac{1}{\lambda_n} E(Y_{1n}) - f(t) \\
= \int_{-\infty}^{\infty} w(y)[f(t - \lambda_n y) - f(t)] \, dy \\
= \lambda_n \int_{-\infty}^{\infty} y w(y) f'(\xi_{t,y,n}) \, dy,
\]

where \(|\xi_{t,y,n} - t| \leq \lambda_n \).

If \(f' \) is bounded and continuous at \(t \), \(\int |t| w(t) \, dt < \infty \), and \(n \lambda_n^3 \to 0 \), then

\[
\sqrt{n \lambda_n} \{ E[f(t)] - f(t) \} = O \left(\sqrt{n \lambda_n \lambda_n} \right) \to 0
\]

and

\[
\sqrt{n \lambda_n} \{ \hat{f}(t) - f(t) \} \to_d N(0, w_0 f(t)).
\]
Other properties of density estimator

Similar to the estimation of a c.d.f., we can also study global properties of f_n or \hat{f} as an estimator of the density curve f, using a suitably defined distance between f and its density estimator. For example, we may study the convergence of $\sup_{t \in \mathbb{R}} |\hat{f}(t) - f(t)|$ or $\int |\hat{f}(t) - f(t)|^2 dt$.

Other density estimators

There are many other density estimation methods, for example,
- the nearest neighbor method (Stone, 1977)
- the smoothing splines (Wahba, 1990)
- local polynomial
- the method of empirical likelihoods
Other properties of density estimator

Similar to the estimation of a c.d.f., we can also study global properties of \(f_n \) or \(\hat{f} \) as an estimator of the density curve \(f \), using a suitably defined distance between \(f \) and its density estimator. For example, we may study the convergence of \(\sup_{t \in \mathbb{R}} |\hat{f}(t) - f(t)| \) or \(\int |\hat{f}(t) - f(t)|^2 dt \).

Other density estimators

There are many other density estimation methods, for example,

- the nearest neighbor method (Stone, 1977)
- the smoothing splines (Wahba, 1990)
- local polynomial
- the method of empirical likelihoods
Example 5.4

An i.i.d. sample of size $n = 200$ was generated from $N(0, 1)$. Density curve estimates, difference quotient f_n and kernel estimate \hat{f}, are plotted in Figure 5.1 with the curve of the true p.d.f. For the kernel estimate, $w(t) = \frac{1}{2} e^{-|t|}$ is used and $\lambda_n = 0.4$. From Figure 5.1, it seems that the kernel estimate is much better than the difference quotient.
Figure 5.1. Density estimates in Example 5.4

- True p.d.f.
- Estimator (5.26)
- Estimator (5.29)