The maximum likelihood method is the most popular method for deriving estimators in statistical inference that does not use any loss function.

Example 4.28

Let X be a single observation taking values from \{0, 1, 2\} according to P_{θ}, where $\theta = \theta_0$ or θ_1 and the values of $P_{\theta_j}(\{i\})$ are given by the following table:

<table>
<thead>
<tr>
<th></th>
<th>$x = 0$</th>
<th>$x = 1$</th>
<th>$x = 2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\theta = \theta_0$</td>
<td>0.8</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>$\theta = \theta_1$</td>
<td>0.2</td>
<td>0.3</td>
<td>0.5</td>
</tr>
</tbody>
</table>

If $X = 0$ is observed, it is more plausible that it came from P_{θ_0}, since $P_{\theta_0}(\{0\})$ is much larger than $P_{\theta_1}(\{0\})$. We then estimate θ by θ_0.
The *maximum likelihood method* is the most popular method for deriving estimators in statistical inference that does not use any loss function.

Example 4.28

Let X be a single observation taking values from $\{0, 1, 2\}$ according to P_θ, where $\theta = \theta_0$ or θ_1 and the values of $P_{\theta_j}(\{i\})$ are given by the following table:

<table>
<thead>
<tr>
<th></th>
<th>$x = 0$</th>
<th>$x = 1$</th>
<th>$x = 2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\theta = \theta_0$</td>
<td>0.8</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>$\theta = \theta_1$</td>
<td>0.2</td>
<td>0.3</td>
<td>0.5</td>
</tr>
</tbody>
</table>

If $X = 0$ is observed, it is more plausible that it came from P_{θ_0}, since $P_{\theta_0}(\{0\})$ is much larger than $P_{\theta_1}(\{0\})$. We then estimate θ by θ_0.
Example 4.28 (continued)

On the other hand, if \(X = 1 \) or 2, it is more plausible that it came from \(P_{\theta_1} \), although in this case the difference between the probabilities is not as large as that in the case of \(X = 0 \). This suggests the following estimator of \(\theta \):

\[
T(X) = \begin{cases}
\theta_0 & X = 0 \\
\theta_1 & X \neq 0.
\end{cases}
\]

The idea in Example 4.28 can be easily extended to the case where \(P_{\theta} \) is a discrete distribution and \(\theta \in \Theta \subset \mathbb{R}^k \). If \(X = x \) is observed, \(\theta_1 \) is more plausible than \(\theta_2 \) if and only if \(P_{\theta_1}({\{x}\}) > P_{\theta_2}({\{x}\}) \).

We then estimate \(\theta \) by a \(\hat{\theta} \) that maximizes \(P_{\theta}({\{x}\}) \) over \(\theta \in \Theta \), if such a \(\hat{\theta} \) exists.

Under the Bayesian approach with a prior that is the discrete uniform distribution on \(\{\theta_1, \ldots, \theta_m\} \), \(P_{\theta}({\{x}\}) \) is proportional to the posterior probability and we can say that \(\theta_1 \) is more probable than \(\theta_2 \) if \(P_{\theta_1}({\{x}\}) > P_{\theta_2}({\{x}\}) \).
Example 4.28 (continued)

On the other hand, if $X = 1$ or 2, it is more plausible that it came from P_{θ_1}, although in this case the difference between the probabilities is not as large as that in the case of $X = 0$. This suggests the following estimator of θ:

$$T(X) = \begin{cases} \theta_0 & X = 0 \\ \theta_1 & X \neq 0. \end{cases}$$

The idea in Example 4.28 can be easily extended to the case where P_θ is a discrete distribution and $\theta \in \Theta \subset \mathbb{R}^k$. If $X = x$ is observed, θ_1 is more plausible than θ_2 if and only if $P_{\theta_1}(\{x\}) > P_{\theta_2}(\{x\})$. We then estimate θ by a $\hat{\theta}$ that maximizes $P_\theta(\{x\})$ over $\theta \in \Theta$, if such a $\hat{\theta}$ exists.

Under the Bayesian approach with a prior that is the discrete uniform distribution on $\{\theta_1, ..., \theta_m\}$, $P_\theta(\{x\})$ is proportional to the posterior probability and we can say that θ_1 is more probable than θ_2 if $P_{\theta_1}(\{x\}) > P_{\theta_2}(\{x\})$.
Note that $P_{\theta}(\{x\})$ is the p.d.f. w.r.t. the counting measure. Hence, it is natural to extend the idea to the case of continuous (or arbitrary) X by using the p.d.f. of X w.r.t. some σ-finite measure on the range \mathcal{X} of X.

Definition 4.3

Let $X \in \mathcal{X}$ be a sample with a p.d.f. f_{θ} w.r.t. a σ-finite measure ν, where $\theta \in \Theta \subset \mathbb{R}^k$.

(i) For each $x \in \mathcal{X}$, $f_{\theta}(x)$ considered as a function of θ is called the **likelihood function** and denoted by $\ell(\theta)$.

(ii) Let $\bar{\Theta}$ be the closure of Θ. A $\hat{\theta} \in \bar{\Theta}$ satisfying $\ell(\hat{\theta}) = \max_{\theta \in \bar{\Theta}} \ell(\theta)$ is called a **maximum likelihood estimate** (MLE) of θ. If $\hat{\theta}$ is a Borel function of X a.e. ν, then $\hat{\theta}$ is called a **maximum likelihood estimator** (MLE) of θ.

(iii) Let g be a Borel function from Θ to \mathbb{R}^p, $p \leq k$. If $\hat{\theta}$ is an MLE of θ, then $\hat{\vartheta} = g(\hat{\theta})$ is defined to be an MLE of $\vartheta = g(\theta)$.
Note that \(P_\theta(\{x\}) \) is the p.d.f. w.r.t. the counting measure. Hence, it is natural to extend the idea to the case of continuous (or arbitrary) \(X \) by using the p.d.f. of \(X \) w.r.t. some \(\sigma \)-finite measure on the range \(\mathcal{X} \) of \(X \).

Definition 4.3

Let \(X \in \mathcal{X} \) be a sample with a p.d.f. \(f_\theta \) w.r.t. a \(\sigma \)-finite measure \(\nu \), where \(\theta \in \Theta \subset \mathbb{R}^k \).

(i) For each \(x \in \mathcal{X} \), \(f_\theta(x) \) considered as a function of \(\theta \) is called the **likelihood function** and denoted by \(\ell(\theta) \).

(ii) Let \(\bar{\Theta} \) be the closure of \(\Theta \). A \(\hat{\theta} \in \bar{\Theta} \) satisfying \(\ell(\hat{\theta}) = \max_{\theta \in \bar{\Theta}} \ell(\theta) \) is called a **maximum likelihood estimate** (MLE) of \(\theta \). If \(\hat{\theta} \) is a Borel function of \(X \) a.e. \(\nu \), then \(\hat{\theta} \) is called a **maximum likelihood estimator** (MLE) of \(\theta \).

(iii) Let \(g \) be a Borel function from \(\Theta \) to \(\mathbb{R}^p \), \(p \leq k \). If \(\hat{\theta} \) is an MLE of \(\theta \), then \(\hat{v} = g(\hat{\theta}) \) is defined to be an MLE of \(v = g(\theta) \).
Remarks

- Note that $\bar{\Theta}$ instead of Θ is used in the definition of an MLE. This is because a maximum of $\ell(\theta)$ may not exist when Θ is an open set.
 - In some textbooks, Θ is used, instead of $\bar{\Theta}$

- Part (iii) of Definition 4.3 is motivated by a fact given in Exercise 95 of §4.6.

- An MLE may not exist, or there are many MLE’s.

- An MLE may not have an explicit form.

- In terms of their mse’s, MLE’s are not necessarily better than UMVUE’s or Bayes estimators.

- MLE’s are frequently inadmissible.
 - This is not surprising, since MLE’s are not derived under any given loss function.

- The main theoretical justification for MLE’s is provided in the theory of asymptotic efficiency considered in §4.5.
Computation of MLE

If \(\Theta \) contains finitely many points, then \(\bar{\Theta} = \Theta \) and an MLE exists and can always be obtained by comparing finitely many values \(\ell(\theta), \theta \in \Theta \). Since \(\log x \) is a strictly increasing function, \(\hat{\theta} \) is an MLE if and only if it maximizes the log-likelihood function \(\log \ell(\theta) \).

It is often more convenient to work with \(\log \ell(\theta) \).

If \(\ell(\theta) \) is differentiable on \(\Theta^\circ \), the interior of \(\Theta \), then possible candidates for MLE’s are the values of \(\theta \in \Theta^\circ \) satisfying

\[
\frac{\partial \log \ell(\theta)}{\partial \theta} = 0,
\]

which is called the likelihood equation or log-likelihood equation. A root of the likelihood equation may be local or global minima, local or global maxima, or simply stationary points.

Also, extrema may occur at the boundary of \(\Theta \) or when \(\| \theta \| \to \infty \).

Furthermore, if \(\ell(\theta) \) is not always differentiable, then extrema may occur at nondifferentiable or discontinuity points of \(\ell(\theta) \).

Hence, it is important to analyze the entire likelihood function to find its maxima.
Example 4.29

Let X_1, \ldots, X_n be i.i.d. binary random variables with $P(X_1 = 1) = p \in \Theta = (0, 1)$.

When $(X_1, \ldots, X_n) = (x_1, \ldots, x_n)$ is observed, the likelihood function is

$$
\ell(p) = \prod_{i=1}^{n} p^{x_i} (1 - p)^{1-x_i} = p^{\bar{x}} (1 - p)^{n(1-\bar{x})},
$$

where $\bar{x} = n^{-1} \sum_{i=1}^{n} x_i$.

Note that $\bar{\Theta} = [0, 1]$ and $\Theta^\circ = \Theta$.

The likelihood equation is

$$
\frac{n\bar{x}}{p} - \frac{n(1-\bar{x})}{1-p} = 0.
$$

If $0 < \bar{x} < 1$, then this equation has a unique solution \bar{x}.

The second-order derivative of $\log \ell(p)$ is

$$
\frac{n\bar{x}}{p^2} - \frac{n(1-\bar{x})}{(1-p)^2},
$$

which is always negative.
Example 4.29 (continued)

Also, when \(p \) tends to 0 or 1 (the boundary of \(\Theta \)), \(\ell(p) \to 0 \).
Thus, \(\bar{x} \) is the unique MLE of \(p \).
When \(\bar{x} = 0 \), \(\ell(p) = (1 - p)^n \) is a strictly decreasing function of \(p \) and, therefore, its unique maximum is 0.
Similarly, the MLE is 1 when \(\bar{x} = 1 \).
Combining these results, we conclude that the MLE of \(p \) is \(\bar{x} \).
When \(\bar{x} = 0 \) or 1, a maximum of \(\ell(p) \) does not exist on \(\Theta = (0, 1) \), although \(\sup_{p \in (0,1)} \ell(p) = 1 \); the MLE takes a value outside of \(\Theta \) and, hence, is not a reasonable estimator.
However, if \(p \in (0, 1) \), the probability that \(\bar{x} = 0 \) or 1 tends to 0 quickly as \(n \to \infty \).

Discussion

Example 4.29 indicates that, for small \(n \), a maximum of \(\ell(\theta) \) may not exist on \(\Theta \) and an MLE may be an unreasonable estimator; however, this is unlikely to occur when \(n \) is large.
A rigorous result of this sort is given in §4.5.2, where we study asymptotic properties of MLE’s.
Example 4.29 (continued)

Also, when p tends to 0 or 1 (the boundary of Θ), $\ell(p) \to 0$. Thus, \bar{x} is the unique MLE of p.
When $\bar{x} = 0$, $\ell(p) = (1 - p)^n$ is a strictly decreasing function of p and, therefore, its unique maximum is 0.
Similarly, the MLE is 1 when $\bar{x} = 1$.
Combining these results, we conclude that the MLE of p is \bar{x}.
When $\bar{x} = 0$ or 1, a maximum of $\ell(p)$ does not exist on $\Theta = (0, 1)$, although $\sup_{p \in (0, 1)} \ell(p) = 1$; the MLE takes a value outside of Θ and, hence, is not a reasonable estimator.
However, if $p \in (0, 1)$, the probability that $\bar{x} = 0$ or 1 tends to 0 quickly as $n \to \infty$.

Discussion

Example 4.29 indicates that, for small n, a maximum of $\ell(\theta)$ may not exist on Θ and an MLE may be an unreasonable estimator; however, this is unlikely to occur when n is large.
A rigorous result of this sort is given in §4.5.2, where we study asymptotic properties of MLE’s.
Example 4.30

Let X_1, \ldots, X_n be i.i.d. from $N(\mu, \sigma^2)$ with unknown $\theta = (\mu, \sigma^2)$, $n \geq 2$. Consider first the case where $\Theta = \mathbb{R} \times (0, \infty)$.

$$\log \ell(\theta) = -\frac{1}{2\sigma^2} \sum_{i=1}^{n} (x_i - \mu)^2 - \frac{n}{2} \log \sigma^2 - \frac{n}{2} \log(2\pi).$$

The likelihood equation is

$$\frac{1}{\sigma^2} \sum_{i=1}^{n} (x_i - \mu) = 0 \quad \text{and} \quad \frac{1}{\sigma^4} \sum_{i=1}^{n} (x_i - \mu)^2 - \frac{n}{\sigma^2} = 0.$$

Solving the first equation for μ, we obtain a unique solution $\bar{x} = n^{-1} \sum_{i=1}^{n} x_i$, and substituting \bar{x} for μ in the second equation, we obtain a unique solution $\hat{\sigma}^2 = n^{-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$.

To show that $\hat{\theta} = (\bar{x}, \hat{\sigma}^2)$ is an MLE, first note that Θ is an open set and $\ell(\theta)$ is differentiable everywhere; as θ tends to the boundary of Θ or $\|\theta\| \to \infty$, $\ell(\theta)$ tends to 0; and

$$\frac{\partial^2 \log \ell(\theta)}{\partial \theta \partial \theta^\tau} = - \begin{pmatrix} \frac{n}{\sigma^2} & \frac{1}{\sigma^4} \sum_{i=1}^{n} (x_i - \mu) \\ \frac{1}{\sigma^4} \sum_{i=1}^{n} (x_i - \mu) & \frac{1}{\sigma^6} \sum_{i=1}^{n} (x_i - \mu)^2 - \frac{n}{2\sigma^4} \end{pmatrix}.$$
Example 4.30 (continued)

This matrix is negative definite when $\mu = \bar{x}$ and $\sigma^2 = \hat{\sigma}^2$.
Hence $\hat{\theta}$ is the unique MLE.
Sometimes we can avoid the calculation of the second-order derivatives.
For instance, in this example we know that $\ell(\theta)$ is bounded and
$\ell(\theta) \to 0$ as $\|\theta\| \to \infty$ or θ tends to the boundary of Θ; hence the unique solution to the likelihood equation must be the MLE.
Another way to show that $\hat{\theta}$ is the MLE is indicated by the following discussion.
Consider next the case where $\Theta = (0, \infty) \times (0, \infty)$, i.e., μ is known to be positive.
The likelihood function is differentiable on $\Theta^\circ = \Theta$ and
$\bar{\Theta} = [0, \infty) \times [0, \infty)$.
If $\bar{x} > 0$, then the same argument for the previous case can be used to show that $(\bar{x}, \hat{\sigma}^2)$ is the MLE.
If $\bar{x} \leq 0$, then the first equation in the likelihood equation does not have a solution in Θ.

Jun Shao (UW-Madison)
Stat 710, Lecture 10
Feb 13, 2009
10 / 12
Example 4.30 (continued)

However, the function \(\log \ell(\theta) = \log \ell(\mu, \sigma^2) \) is strictly decreasing in \(\mu \) for any fixed \(\sigma^2 \).
Hence, a maximum of \(\log \ell(\mu, \sigma^2) \) is \(\mu = 0 \), which does not depend on \(\sigma^2 \).
Then, the MLE is \((0, \tilde{\sigma}^2)\), where \(\tilde{\sigma}^2 \) is the value maximizing \(\log \ell(0, \sigma^2) \) over \(\sigma^2 \geq 0 \).
Maximizing \(\log \ell(0, \sigma^2) \) leads to \(\tilde{\sigma}^2 = n^{-1} \sum_{i=1}^{n} x_i^2 \).
Thus, the MLE is

\[
\hat{\theta} = \begin{cases}
(\bar{x}, \tilde{\sigma}^2) & \text{if } \bar{x} > 0 \\
(0, \tilde{\sigma}^2) & \text{if } \bar{x} \leq 0.
\end{cases}
\]

Again, the MLE in this case is not in \(\Theta \) if \(\bar{x} \leq 0 \).
One can show that a maximum of \(\ell(\theta) \) does not exist on \(\Theta \) when \(\bar{x} \leq 0 \).
Example 4.31

Let X_1, \ldots, X_n be i.i.d. from the uniform distribution on an interval \mathcal{I}_θ with an unknown θ.

First, consider the case where $\mathcal{I}_\theta = (0, \theta)$ and $\theta > 0$, $\Theta^\circ = (0, \infty)$.

The likelihood function is

$$
\ell(\theta) = \theta^{-n} I_{(x(n), \infty)}(\theta), \quad x(n) = \max(x_1, \ldots, x_n).
$$

On $(0, x(n))$, $\ell \equiv 0$ and on $(x(n), \infty)$, $\ell'(\theta) = -n\theta^{n-1} < 0$ for all θ.

$\ell(\theta)$ is not differentiable at $x(n)$ and the method of using the likelihood equation is not applicable.

Since $\ell(\theta)$ is strictly decreasing on $(x(n), \infty)$ and is 0 on $(0, x(n))$, a unique maximum of $\ell(\theta)$ is $x(n)$, which is a discontinuity point of $\ell(\theta)$.

This shows that the MLE of θ is the largest order statistic $X_{(n)}$.

Next, consider the case where $\mathcal{I}_\theta = (\theta - \frac{1}{2}, \theta + \frac{1}{2})$ with $\theta \in \mathbb{R}$.

The likelihood function is

$$
\ell(\theta) = I_{(x(n) - \frac{1}{2}, x(1) + \frac{1}{2})}(\theta), \quad x(1) = \min(x_1, \ldots, x_n)
$$

Again, the method of using the likelihood equation is not applicable.

However, it follows from Definition 4.3 that any statistic $T(X)$ satisfying $x(n) - \frac{1}{2} \leq T(X) \leq x(1) + \frac{1}{2}$ is an MLE of θ.

This example indicates that MLE’s may not be unique and can be unreasonable.