Stat 710: Mathematical Statistics
Lecture 3

Jun Shao

Department of Statistics
University of Wisconsin
Madison, WI 53706, USA
Hyperparameters and empirical Bayes

A Bayes action depends on the chosen prior with a vector \(\xi \) of parameters called *hyperparameters*. So far, hyperparameters are assumed to be known.

If the hyperparameter \(\xi \) is unknown, one way to solve the problem is to estimate \(\xi \) using some historical data; the resulting Bayes action is called an *empirical Bayes* action.

If there is no historical data, we may estimate \(\xi \) using data \(x \) and the resulting Bayes action is also called an empirical Bayes action.

The simplest empirical Bayes method is to estimate \(\xi \) by viewing \(x \) as a “sample” from the marginal distribution

\[
P_{x|\xi}(A) = \int_\Theta P_{x|\theta}(A) d\Pi_{\theta|\xi}, \quad A \in \mathcal{B}_X,
\]

where \(\Pi_{\theta|\xi} \) is a prior depending on \(\xi \) or from the marginal p.d.f. \(m(x) = \int_\Theta f_\theta(x) d\Pi \), if \(P_{x|\theta} \) has a p.d.f. \(f_\theta \).

The method of moments can be applied to estimate \(\xi \).
Let $X = (X_1, ..., X_n)$ and X_i's be i.i.d. from $N(\mu, \sigma^2)$ with an unknown $\mu \in \mathbb{R}$ and a known σ^2.

Consider the prior $\Pi_{\mu | \xi} = N(\mu_0, \sigma_0^2)$ with $\xi = (\mu_0, \sigma_0^2)$.

To obtain a moment estimate of ξ, we need to calculate

$$\int_{\mathbb{R}^n} x_1 m(x) \, dx \quad \text{and} \quad \int_{\mathbb{R}^n} x_1^2 m(x) \, dx, \quad x = (x_1, ..., x_n).$$

These two integrals can be obtained without calculating $m(x)$. Note that

$$\int_{\mathbb{R}^n} x_1 m(x) \, dx = \int_{\Theta} \int_{\mathbb{R}^n} x_1 f_\mu(x) \, dx \, d\Pi_{\mu | \xi} = \int_{\mathbb{R}} \mu \, d\Pi_{\mu | \xi} = \mu_0$$

and

$$\int_{\mathbb{R}^n} x_1^2 m(x) \, dx = \int_{\Theta} \int_{\mathbb{R}^n} x_1^2 f_\mu(x) \, dx \, d\Pi_{\mu | \xi} = \sigma^2 + \int_{\mathbb{R}} \mu^2 \, d\Pi_{\mu | \xi}$$

$$= \sigma^2 + \mu_0^2 + \sigma_0^2$$
Example 4.4: (continued)

Thus, by viewing x_1, \ldots, x_n as a sample from $m(x)$, we obtain the moment estimates

$$\hat{\mu}_0 = \bar{x} \quad \text{and} \quad \hat{\sigma}^2_0 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2 - \sigma^2,$$

where \bar{x} is the sample mean of x_i's.

Replacing μ_0 and σ^2_0 in

$$\mu^*(x) = \frac{\sigma^2}{n\sigma^2_0 + \sigma^2} \mu_0 + \frac{n\sigma^2_0}{n\sigma^2_0 + \sigma^2} \bar{x}$$

(Example 2.25) by $\hat{\mu}_0$ and $\hat{\sigma}^2_0$, respectively, we find that the empirical Bayes action under the squared error loss is simply the sample mean \bar{x} (which is the generalized Bayes action in Example 4.3).

Note that $\hat{\sigma}^2_0$ in Example 4.4 can be negative.

Better empirical Bayes methods can be found, for example, in Berger (1985, §4.5)
Hierarchical Bayes

Instead of estimating hyperparameters, in the *hierarchical* Bayes approach we put a prior on hyperparameters. Let $\Pi_{\theta|\xi}$ be a (first-stage) prior with a hyperparameter vector ξ and let Λ be a prior on Ξ, the range of ξ. Then the “marginal” prior for θ is defined by

$$
\Pi(B) = \int_{\Xi} \Pi_{\theta|\xi}(B) d\Lambda(\xi), \quad B \in \mathcal{B}_\Theta.
$$

If the second-stage prior Λ also depends on some unknown hyperparameters, then one can go on to consider a third-stage prior. In most applications, however, two-stage priors are sufficient, since misspecifying a second-stage prior is much less serious than misspecifying a first-stage prior (Berger, 1985, §4.6). In addition, the second-stage prior can be noninformative (improper). Bayes actions can be obtained in the same way as before. Thus, the hierarchical Bayes method is simply a Bayes method with a hierarchical prior.
Remarks

- Empirical Bayes methods deviate from the Bayes method since x is used to estimate hyperparameters.
- The hierarchical Bayes method is generally better than empirical Bayes methods.

Suppose that X has a p.d.f. $f_\theta(x)$ w.r.t. a σ-finite measure ν and $\Pi_{\theta|x}$ has a p.d.f. $\pi_{\theta|x}(\theta)$ w.r.t. a σ-finite measure κ. Then the prior Π has a p.d.f. (w.r.t. κ)

$$\pi(\theta) = \int_\Xi \pi_{\theta|x}(\theta) d\Lambda(\xi)$$

and

$$m(x) = \int_{\Theta} \int_\Xi f_\theta(x) \pi_{\theta|x}(\theta) d\Lambda d\kappa.$$

Let $P_{\theta|x,\xi}$ be the posterior distribution of $\tilde{\theta}$ given x and ξ and

$$m_{x|\xi}(x) = \int_{\Theta} f_\theta(x) \pi_{\theta|x}(\theta) d\kappa,$$

which is the marginal of X given ξ.

Jun Shao (UW-Madison) Stat 710, Lecture 3 Jan 26, 2009 6 / 1
Remarks

- Empirical Bayes methods deviate from the Bayes method since x is used to estimate hyperparameters.
- The hierarchical Bayes method is generally better than empirical Bayes methods.

Suppose that X has a p.d.f. $f_\theta(x)$ w.r.t. a σ-finite measure ν and $\Pi_{\theta|\xi}$ has a p.d.f. $\pi_{\theta|\xi}(\theta)$ w.r.t. a σ-finite measure κ. Then the prior Π has a p.d.f. (w.r.t. κ)

$$\pi(\theta) = \int_{\Xi} \pi_{\theta|\xi}(\theta) d\Lambda(\xi)$$

and

$$m(x) = \int_{\Theta} \int_{\Xi} f_\theta(x) \pi_{\theta|\xi}(\theta) d\Lambda d\kappa.$$

Let $P_{\theta|x,\xi}$ be the posterior distribution of $\tilde{\theta}$ given x and ξ and

$$m_{x|\xi}(x) = \int_{\Theta} f_\theta(x) \pi_{\theta|\xi}(\theta) d\kappa,$$

which is the marginal of X given ξ.
Then the posterior distribution $P_{\theta|x}$ has a p.d.f.

$$\frac{dP_{\theta|x}}{d\kappa} = \frac{f_{\theta}(x)\pi(\theta)}{m(x)}$$

$$= \int_{\Xi} \frac{f_{\theta}(x)\pi_{\theta|x}(\theta)}{m(x)} d\Lambda(\xi)$$

$$= \int_{\Xi} \frac{f_{\theta}(x)\pi_{\theta|x}(\theta) m_{x|\xi}(x)}{m(x)} d\Lambda(\xi)$$

$$= \int_{\Xi} \frac{dP_{\theta|x,\xi}}{d\kappa} dP_{\xi|x},$$

where $P_{\xi|x}$ is the posterior distribution of ξ given x.

Thus, under the estimation problem considered in Example 4.1, the (hierarchical) Bayes action is

$$\delta(x) = \int_{\Xi} \delta(x, \xi) dP_{\xi|x},$$

where $\delta(x, \xi)$ is the Bayes action when ξ is known. A result similar to this is given in Lemma 4.1.
Example 4.5

Consider Example 4.4 again.
Suppose that μ_0 in the first-stage prior $N(\mu_0, \sigma_0^2)$, is unknown and σ_0^2 is known.
Let the second-stage prior for $\xi = \mu_0$ be the Lebesgue measure on \mathbb{R} (improper prior).
From Example 2.25,

$$
\delta(x, \xi) = \frac{\sigma^2}{n\sigma_0^2 + \sigma^2} \xi + \frac{n\sigma_0^2}{n\sigma_0^2 + \sigma^2} \bar{x}.
$$

To obtain the Bayes action $\delta(x)$, it suffices to calculate $E_{\xi|x}(\xi)$, where the expectation is w.r.t. $P_{\xi|x}$.
Note that the p.d.f. of $P_{\xi|x}$ is proportional to

$$
\psi(\xi) = \int_{-\infty}^{\infty} \exp \left\{ -\frac{n(\bar{x}-\mu)^2}{2\sigma^2} - \frac{(\mu-\xi)^2}{2\sigma_0^2} \right\} d\mu.
$$
Example 4.5 (continued)

Using the properties of normal distributions, one can show that

\[
\psi(\xi) = C_1 \exp \left\{ \left(\frac{n}{2\sigma^2} + \frac{1}{2\sigma_0^2} \right)^{-1} \left(\frac{n\bar{x}}{2\sigma^2} + \frac{\xi}{2\sigma_0^2} \right)^2 - \frac{\xi^2}{2\sigma_0^2} \right\}
\]

\[
= C_2 \exp \left\{ - \frac{n\xi^2}{2(n\sigma_0^2 + \sigma^2)} + \frac{n\bar{x}\xi}{n\sigma_0^2 + \sigma^2} \right\}
\]

\[
= C_3 \exp \left\{ - \frac{n(\xi - \bar{x})^2}{2(n\sigma_0^2 + \sigma^2)} \right\},
\]

where \(C_1, C_2, \) and \(C_3 \) are quantities not depending on \(\xi \).

Hence \(E_{\xi|x}(\xi) = \bar{x} \).

The (hierarchical) generalized Bayes action is then

\[
\delta(x) = \frac{\sigma^2}{n\sigma_0^2 + \sigma^2} E_{\xi|x}(\xi) + \frac{n\sigma_0^2}{n\sigma_0^2 + \sigma^2} \bar{x} = \bar{x}.
\]